Magnetic Levitation Applications: Clean, Simple and Reliable

Keith Kerwin
Matt Cannon
Robert Hall
12 May 2011
Chemical and Slurry Supply

• The intent of UHP supply schemes... and for that matter Slurry supply schemes too

 – No added contamination (metals, PCs)
 – Filtration, with no particle shedding
 – No failures, no leaks, no personnel exposure
 – Reliability, it just runs
 – Simplicity, easy to understand and operate
 – Low initial cost, not cheap – cost effective
 – Low maintenance & spares cost (simple, reliable, low cost)
In the Days of My Youth

• The early days
 – Pour up chemicals from Bottles
 • Exposure
 • Variability, contamination
 • Waste bottles
 • Resources (manual)
 • No PC reduction

 – Pump & Filter
 • Pump failure – reliability & contamination
 (shuttles/proximity sensors, solenoids, diaphragms or bellows, seals, guides, shafts)
 • Filter pressure pulsation...
 Add a pulse dampener and it works better but...
 • System pressure swing
The Big and the Bold

• Large Pressure Vessel & Filter
 – Pressure to Pressure (pump independent)
 • Large high pressure tank(s)
 • No pumps
 • Mobile pressure vessel (drum)
 • High initial cost
 • Cost for chemical transfill
 – Pump to Pressure (minimal pump dependency)
 • Large high pressure tank(s)
 • Pumps
 • Drum transfer pump backpressure
 • Pump failures
 – With any PV there is a chance for N2 entrainment
 • Not an issue for most chemistries but not ALL chemistries
 • Increases with larger vessels (surface area)
 • Higher pressure
 • Greater residence time
All Things to All Customers

- Small Pressure Vessel & Filter
 - Pump to Pressure Piston
 - Vacuum to Pressure Piston
 - Small pressure vessels
 - High cycle valves
 - Timing circuits and sensor dependent
 - Maintenance modes for flushing/filter change
 - Shutdown modes for everything under the sun
 - Pump interdependence (pump/piston)
 - Limited throughput and application, components (vacuum/pressure)
 - Just way too complex (40+ sensors & solenoids)
The Status Quo

<table>
<thead>
<tr>
<th>Chemical Dispense Options</th>
<th>Bottle Pour</th>
<th>Pump w/ Dampener</th>
<th>Pressure to Pressure Vessel</th>
<th>Pump to Pressure Vessel</th>
<th>Pump to Pressure Piston</th>
<th>Vacuum to Pressure Piston</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Contamination Potential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Particle shedding</td>
<td>X</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Leak potential</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>– Personnel exposure</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>– Reliability (Vulnerability)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>√</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– Simplicity</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– Universality</td>
<td>√</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– Cost (chem dispense unit)</td>
<td>N/A</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– Cost (day tank)</td>
<td>N/A</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>– Operating cost (chemical)</td>
<td>X</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>– Operating cost (spare parts)</td>
<td>N/A</td>
<td>X</td>
<td>√</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– Operating cost (personnel)</td>
<td>X</td>
<td>X</td>
<td>√</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
My Resistance to Change

• Why would I want to use a Levitronix pump?
 – Oh, it’s just another magnetic drive pump
 • Seals, drive failures, contamination, cost
 – Oh, it’s a “Slurry” pump
 – Oh, it has no suction lift
 – Oh, it cost way too much
 – Oh, we’re happy (not) with the status quo
 – Oh, it’s complicated (pump controller)
 – Oh, it’s single source supply

• Oh, no! Oh, no!

• Oh YES said CMP Technology Development
 – “Build one just like the last one” – were my marching orders
Experimental Slurry Systems

- BPS-4 pump
- Simple single line with minimal bypass loops
- Open framework (no HPM)
- Low voltage Controls are separated from high voltage pump drives
- Can run in manual mode or with LUI
Experimental Slurry Systems

- CMP Technology Development
 - “Build one just like the last one” – were my marching orders
 - Operation by Pressure Control PID Loop
 - Transfer = drum & diaphragm pump
 - Process = Daytank, Mag/Lev Pump, filter, flow/pressure meter
 - Return = Heat Exchanger and backpressure adjustment

- Application – Slurries, low use for trial/test use
 - Bulk Cu
 - Barrier Cu
 - Oxide
 - W
 - Analog Technology Slurries
 - Filter Studies
 - Problems
 - Oops, 25% Oxide Clogs
 - Barrier (cottage cheese chunks)
 - Heat build up – not significant
 - Floating Ground (~200mv) speed mismatch frustration
 (drive and controller not tied to same ground)
Bulk H2SO4 System

- BPS 4000 Pumps
- Nippon Pilar fittings
 - 1 ½” in / 1” out
 - 1 ½” PFA pipelines
- Air cooled
- 20 meter interface cables
- Pump associated with a tank (Pump A to Tank A)
 - If offline, recirculating only
 - If online, recirculate & supply
Bulk H2SO4 System

• Supply multiple factories with UHP H2SO4
 – 1250 gallons per day
 – 1 ½” Teflon Tube Pipeline
 – Longest pipeline is 1800 feet (550 meters)
 – 50 foot (15 meter) elevation change
 – Fill local non-pressurized day tanks in factories

• Levitronix application engineering
 – Provided pressure drop node analysis
 – Pump and pipeline sizing alternatives

• Continuous pump flow
 – Dual pumps, dual offload/supply tanks
 – Continuous tank recirculation
 – Deadhead pipeline supply (demand valve)
 – Pressure PID Loop control

• Start up concerns
 – Contamination/leachables
 – Run dry, Priming
My Conversion

<table>
<thead>
<tr>
<th>Chemical Dispense Options</th>
<th>Bottle Pour</th>
<th>Pump w/ Dampener</th>
<th>Pressure to Pressure Vessel</th>
<th>Pump to Pressure Vessel</th>
<th>Pump to Pressure Piston</th>
<th>Vacuum to Pressure Piston</th>
<th>Mag Lev</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Contamination Potential</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>- Particle shedding</td>
<td>X</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>- Leak potential</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>- Personnel exposure</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>- Reliability (Vulnerability)</td>
<td>X</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>- Simplicity</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>- Universality</td>
<td>√</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>- Cost (chem dispense unit)</td>
<td>N/A</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>- Cost (day tank)</td>
<td>N/A</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>- Operating cost (chemical)</td>
<td>X</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>- Operating cost (spare parts)</td>
<td>N/A</td>
<td>X</td>
<td>√</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>- Operating cost (personnel)</td>
<td>X</td>
<td>X</td>
<td>√</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>√</td>
</tr>
</tbody>
</table>
UHP Chemical Dispense Systems

• Basis of Design
 – Experimental Slurry Systems
 – Simple design
 • 6 solenoids (4 valves, 2 diaphragm pumps)
 • Manual sampling, filter venting
 • No automatic maintenance functions (flush, filter change, etc)
 – HPM Containment/Enclosure (packaging, ease of maintenance)
 – Redundancy (dual mag/lev pumps – because we just have to + dual filters)
 – Integrated Drum Transfer
 – Local filter recirculation/polish (dead headed distribution)

• Controls & Programming
 – Open architecture, off the shelf industrial equipment
 – Simple display
 – Pressure and flow metering
 • Pressure transmitter upstream of filters and downstream for PID loop control
 • Flow transmitter to set recirculation & gauge flow
 • Flow transmitter – Adrian & the cable guys, just hit reset

• Local recirculation
 – Eliminate dead head and minimize heat buildup
 – Filter polishing
 – Rock solid pressure control to dead headed demand distribution

• Quick spec/analysis
 – New CDUs in-spec quickly (metals < 100ppt and PCs <2 total in all bins)
UHP Chemical Dispense Systems

- BPS 4 Pumps & BPS 4000
- Flare fittings
 - 1” in / 1” out
 - 1 PFA pipelines
- No added air cooling
- Standard interface cables
- Weekly Manual pump rotation
- Automatic pump E-Call
- BPS 4000 for H2SO4
UHP Chemical Dispense Systems

- Simple flow path
- Simple redundancy
- Minimal instrumentation
- Minimal automation
UHP CDU Systems

• High Voltage Compartment
• Power terminals
• PLC and Pump interface terminals
• Connectors and status lights on top of controllers
• Convenience power
UHP CDU Systems

- Low voltage controls, CPU, IO & Flowmeter
- Dual power module, communication module
- Pump & Valve Solenoids, Air/N2 regulation
UHP CDU Systems
Booster Pump System

- Inconsistent Pressure at Spray Processor
 - Farthest point in distribution
 - 650 feet (200 m) pipeline
 - 35 feet (10 m) elevation

- Simple in-line Solution
 - BPS 200 pump, in-line booster with Levitronix pressure controller

- Made complex
 - Bypass, filtration
 - Pressure gauge & transmitter

- And more complex
 - Not enough “features” – need PLC
 - External signals
 - Delay/timing sequence
 - Complete pressure drop/starvation
 - No suction capability
 - Added (not shown) Head Tanks
And to the Future?

Questions?