Impact of CMP buffing chemistry on defects level for interconnections on CMOS processing

CMP Users Meeting

April 12th 2013

D.JEANJEAN

Damien JEANJEAN
Olivier ROBIN
Sebastien GAILLARD
David GALPIN
Grégoire DUCOTYEY
Frédérique TRENTESEAUX
Olivier HINSINGER

STMicroelectronics, Crolles – France
• Motivation of the study
• Buffing step introduction
• Chemistry Buffing step introduction results
 • Defectivity, D0 electrical data
• Discussion on defects removing mechanism
• Conclusions
IC evolution is driven by:
- Cost reduction
- Complexity
- Performances
- Miniaturization

Dimension reductions induce new technological challenges.
Introduction of new interconnect materials have driven the development of new CMP and post-CMP cleaning applications.
Among CMP defectivity catalogue ➔ Slurry balls are potentially serious killer defects

- Why?

- Silica balls used as abrasive in commercially available slurries
 - Ø from 25nm to 120 nm
 - with different solid content %

Size to be compared to the lines width of latest technologies nodes

<table>
<thead>
<tr>
<th>ITRS Roadmap</th>
<th>M1/MX pitch</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 nm node</td>
<td>M1/MX pitch</td>
<td>130/140nm</td>
</tr>
<tr>
<td>32 nm node</td>
<td>M1/MX pitch</td>
<td>90/100nm</td>
</tr>
<tr>
<td>22 nm node</td>
<td>M1/MX pitch</td>
<td>60/70nm</td>
</tr>
</tbody>
</table>

Silica balls can be left post CMP process: how it impacts the lots processing?
Motivation of the buffing step introduction

- In line defects characterization
 - Defectivity review done post CMP Cu line 1 & post hard mask etch line 2
 - Silica slurry residues let by CMP generate topography on subsequent dielectrics inducing mispatterning

- Defects could generate shorts and metals opens
- POR cleaning solution and benchmark with other chemistry in brushes not enough efficient

Need to address this defectivity ➔ Platen 3 buffing Step introduction
Experiments description

Low pressure Platen 3 buffing
DIW POR is compared to alcalin chemistry dispense

POR acidic chemistry in cleaner is kept

The experiment sequence is
- Over rinse in brush box1 beginning

<table>
<thead>
<tr>
<th>Chemistries</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurry</td>
<td>Alkaline</td>
</tr>
<tr>
<td>Buffing step</td>
<td>Alkaline</td>
</tr>
<tr>
<td>Cleaner</td>
<td>Acidic</td>
</tr>
</tbody>
</table>
Major defectivity results on lots

Post CMP def inspection

- Defectivity trend after buffing step introduction
- Huge reduction of corrosion defect type
- No change on other defects types

Post etch hard mask line2 def inspection

- Balls are form previous level embedded
- A) Split lot analysis
 - Slurry balls defects density / 10 vs POR
- B) Defectivity trend after buff introduction
 - Gain confirmed
Majors Yield D0 electric results

M2 Shorts vs M1 split

- Metal 2 Shorts: Split lot analysis
 - Buffing step allows to reduce Metal shorts vs POR

<table>
<thead>
<tr>
<th>M2 shorts vs M1 split</th>
<th>POR</th>
<th>Buffing step</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 (a.u.)</td>
<td>x</td>
<td>-38%</td>
</tr>
</tbody>
</table>

M2 Opens vs M1 split

- Metal 2 Opens: Split lot analysis
 - Buffing step allows to reduce Metal Opens vs POR

<table>
<thead>
<tr>
<th>M2 opens vs M1 split</th>
<th>POR</th>
<th>Buffing step</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 (a.u.)</td>
<td>x</td>
<td>-23%</td>
</tr>
</tbody>
</table>
Discussion - Slurry particles removal in 2 steps

Silica particles deposit

- Post POR CMP process, 2 cases:
 - Embedded in Cu-BTA positively charged
 - Free balls on both surfaces

Stage 1: silica particles removing: P3 buffing with alkaline chemistry

- Allowing strong surface repulsion from dielectrics
 - Due to strong negative Zeta potential
 - Zeta Potential values: ~ -80mV, ~ -55mV
 - Weaker effect on Cu-BTA removing

Stage 2: silica particles removing: brush cleaning with acidic chemistry

- Allowing to remove faster Cu-BTA residues
- And the Embedded silica particles
 - Avoid redeposition
 - Weaker effect on free slurry balls
Summary

• New CMP buffing chemistry has been introduced on platen 3

 • The chemistry sequence is then alcalin chemistry on p3 following by acidic chemistry in cleaner

 • Allowing the removing of free slurry balls let on wafers and clusters balls embedded in Cu-BTA residues

 • A longer life brush can be expected

 • A reduction of defects type as corrosion and slurry balls has been measured on lots monitoring the line

• Opens and Shorts D0 level reduction has been measured.

• Buffing P3 impact and results is slurry dependant:

 • Next: Solid abrasive size and BTA content to be carefull in the choice of next technology nodes slurries
Thanks for your attention