New CMP Applications
And Opportunities for Improvement

Robert L. Rhoades, Ph.D.
Presentation for Levitronix Conference
May 2011
Outline

Background

TSV’s

Diamond CMP

Opportunities for Improvement

Summary
Background

- A trademark of the semiconductor industry is the relentless drive toward better, faster, & cheaper everything

- CMP became established as a mainstream CMOS process for oxide, tungsten, STI and copper planarization

- Numerous other technologies are now adapting CMP for new materials, different types of devices, etc.
 - Packaging
 - MEMS and Microfluidics
 - Novel substrates
 - Nanotechnology
 - Optics
 - Etc.
As CMP applications continue to multiply … optimized consumables, processes and methods must be developed with lowest possible risk and cost.
3D Packaging Apps

Source: Yole Development 2007
3D Scenarios

Scenario 1: Via drilling Via filling Thinning Bonding
Fraunhofer, All-via, IMEC, ASET, Tohoku

Scenario 2: Via drilling Via filling Bonding Thinning
Tezzaron

Scenario 3: Thinning Via drilling Via filling Bonding
Infineon

Scenario 4: Bonding Thinning Via drilling Via filling
RPI
Packaging

• Vertical interconnects for 3D integration of electronics, MEMS, and other types of devices.

• CMP has been in development for advanced packaging for > 8 years.

• Deep vias can be filled with any of several conductive materials.
 – Most common options are copper and polysilicon.
 – Final choice depends on dimensions, operating voltage and current, frequency, plus other integration factors.

• Vias can be completely filled or left partially hollow
 – Hollow vias can be quite difficult to clean after CMP
Typical TSV Flow

- Wafer Grind
- CMP
- Etch (Optional)
- TSV Exposure

- Grind Thickness
- Polish Thickness
- Etch Thickness
- Process Guidelines

Thickness Ratio
Optimal Parameters

Our Expertise, Our Services, Your Success
<table>
<thead>
<tr>
<th>TSV Fill Material</th>
<th>Deposition Thickness</th>
<th>Demonstrated CMP Polish Rate</th>
<th>Dishing / Recess (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>5 kA – 60 µm</td>
<td>1 kA/min – 8 µm/min</td>
<td>10 A – 0.3 µm</td>
</tr>
<tr>
<td>Polysilicon</td>
<td>4 kA – 30 kA</td>
<td>2 kA/min – 15 kA/min</td>
<td>300 – 1200 Ang</td>
</tr>
<tr>
<td>Tungsten</td>
<td>3 kA – 9 kA</td>
<td>3 kA;/min – 8 kA/min</td>
<td>150 – 300 Ang</td>
</tr>
<tr>
<td>NiFe or NiFeCo</td>
<td>1.5 µm – 8 µm</td>
<td>3 kA/min – 7 kA/min</td>
<td>600 – 4000 Ang</td>
</tr>
<tr>
<td>Pt</td>
<td>1.5 µm – 5 µm</td>
<td>1.5 kA/min – 5 kA/min</td>
<td>100 – 800 Ang</td>
</tr>
</tbody>
</table>
Copper Vias

- Numerous customers are using plated copper for TSV’s
- Typical via sizes 5–100 µm and plating thicknesses 3–40 µm
- Cu recess below 0.4 µm achieved for multiple trials
- Characterized CMP interactions with cumulative film stress, wafer shape, annealing, etc.

2nd Example: Cu (stop on TEOS)
- Intended integration = Direct Wafer Bonding
- Goal of <200 A total topography

POST-CMP TOPOGRAPHY ACHIEVED
70-90 Angstroms
Tungsten Vias

• Technology adapted from proven CMOS device integrations

• Typical via sizes are sub-micron but many vias can be ganged in parallel for higher current

• Typical W recess achieved is below 500 Ang

• Relatively mature CMP approach, but integration can be difficult, esp. stress control

Center

Edge
Pt Vias

• Some devices require high temperature processes, such as annealing of piezoelectric layers
 – RF switches, cantilever sensors, and acoustic transducers

• Fabricating TSV’s prior to MEMS (via-first approach) requires materials that can withstand high annealing temperatures needed for piezoelectric films (>600°C)

• Platinum is a potential candidate, but fabrication techniques for Pt vias are not yet mature
1. Etch vias in SOI substrate
 3-7 μm dia.
 5 μm depth

2. Oxidize silicon
 (1 μm);
 sputter Ti/Pt seed
 (0.7 μm)

3. Deposit resist
 plating template
 (3.5 μm)

4. Plate Pt to fill vias;
 remove resist

5. CMP Pt over-
 burden, stopping
 on SiO₂

6. Evaporate electrodes,
 spin coat PZT (1 μm),
 anneal (700°C)
CMP Slurry Screening

- CMP screening experiments to determine removal rates

- Process targets:
 - Pt (RR > 2000 Ang/min)
 - Ti (RR > 2000 Ang/min)
 - SiO$_2$ (High selectivity)
 - Good surface quality

- Slurry C met required performance and was used for further work

CMP Slurry Screening Results

<table>
<thead>
<tr>
<th>Slurry</th>
<th>Pt Rate (A/min)</th>
<th>Ti Rate (A/min)</th>
<th>Tox Rate (A/min)</th>
<th>Selectivity (Pt:Ti)</th>
<th>Selectivity (Ti:Oxide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12</td>
<td>8</td>
<td><1</td>
<td>1.5</td>
<td>> 8</td>
</tr>
<tr>
<td>B</td>
<td>104</td>
<td>1461</td>
<td>195</td>
<td>0.1</td>
<td>7.5</td>
</tr>
<tr>
<td>C</td>
<td>2980</td>
<td>3955</td>
<td>132</td>
<td>0.8</td>
<td>30.0</td>
</tr>
<tr>
<td>D</td>
<td>436</td>
<td>2108</td>
<td>777</td>
<td>0.2</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Pt Vias

- Electroplated Pt for via fill
- Tolerates high temperatures up to 700°C
• Polycrystalline diamond films
 – Extremely hard and chemically inert
 – Optimized deposition/growth to improve starting Ra
 – Still slightly rough as deposited (Ra ~10 nm)

• Desired process targets
 – Roughness < 1 nm (Ra on 3 x 3um AFM)
 – Total removal < 100 nm (prefer < 50 nm)
 – Scratch-free and particle-free final surfaces

• Example application = RF MEMS Oscillator
• UNCD resonates with frequency dependent upon its Young's Modulus and film thickness. Diamond has the highest acoustic velocity and YM of any material.

• Piezoelectric signal imparted by high efficiency piezoelectric material (AlN)

Critical interface determines quality of epi-AlN layer and quality of resonance

This surface MUST be smooth!

Mo Metal lines carry current to AlN

epitaxial c-axis oriented AlN

Mo

UNCD (3 um)

Resonance Frequency
Diamond Surfaces

- Roughness > 50 nm RMS
- Roughness = 10 nm RMS
- Roughness < 1 nm RMS

Typical deposition | Optimized deposition | After CMP

All images taken by AFM using 5x5 um field of view and same vertical scale
Diamond CMP Screening Trials

- Polish Rate (Ang/hour)
- Ra (nm)

Month:
- A1
- A2
- A3
- A4
- B1
- D1
- E2
- E2
- E3
- E4

Roughness Ra (Ang)

Polish Rate (Ang/hour)
Effect of UNCD Roughness on Crystal Quality of Piezoelectric AlN Layer (X-ray Rocking Curve FWHM)

3.0 um UNCD

<table>
<thead>
<tr>
<th>Wafer ID</th>
<th>Intrinsic AlN Film Stress (MPa)</th>
<th>Mo Rocking Curve FWHM</th>
<th>AlN Rocking Curve FWHM</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3702</td>
<td>-131</td>
<td>6.3°</td>
<td>5.7°</td>
<td>CMP polished to less than 1nm RMS</td>
</tr>
<tr>
<td>4350</td>
<td>+5</td>
<td>5.8°</td>
<td>5.0°</td>
<td>CMP polished to less than 1nm RMS</td>
</tr>
<tr>
<td>6228</td>
<td>-164</td>
<td>>11°</td>
<td>>12°</td>
<td>As-deposited Aqua25 UNCD (6-8 nm RMS)</td>
</tr>
<tr>
<td>6229</td>
<td>-80</td>
<td>10.5°</td>
<td>11.2°</td>
<td>As-deposited Aqua25 UNCD (6-8 nm RMS)</td>
</tr>
</tbody>
</table>
Improvements

- **Performance**
 - Often drives the initial development effort
 - CMP process MUST meet minimum requirements which are very different between applications and nodes

- **Repeatability**
 - Often becomes a most critical factor in manufacturing
 - Can be tough to troubleshoot (numerous sources)
 - Most process engineers will trade a bit of extra performance to improve consistency ... in a heartbeat!

- **Cost**
 - Increasingly driving decisions
 - No longer focused on simply consumables
CMP Performance

- Wafer Level Metrics
 - Removal Rates and Selectivities
 - Uniformity
 - Planarization (roughness, dishing, erosion, etc.)
 - Defectivity

- Integration drives CMP requirements
- Device design drives integration
- Market drives device design (& cost targets)
- Performance gaps can appear at any time
 - New products or evolution in existing markets
Early stage development efforts often involve:

- Immature deposition or growth processes
- Poorly characterized materials or integrations
- Technologists who may not be familiar with CMP and how it interacts with other process modules
- Wide variation in pattern density/feature sizes
- Wafer sizes smaller than 200 mm
- Limited availability of test wafers

These factors can create huge challenges for CMP
Zoom in on CMP process development

Experience with broad range of materials, pads, and slurries is key to efficiency

Test wafer availability and quality often impact timeline, validity of results, etc.

Initial process DOE’s generally focus on removal rate and surface quality

Optimization stages can be interchanged or executed in parallel

Planarity can mean step height, dishing, recess, roughness, etc. depending on the material and intended application

Metrics are specific to each integration and can be adjusted as required
CMP Complexity

• **Wafer / Materials Parameters**
 – Size / Shape / Flatness
 – Film Stack Composition
 • Metals (Al, Cu, W, Pt, etc.)
 • Oxide (TEOS, PSG, BPSG, etc.)
 • Other (polysilicon, low-k polymers, etc.)
 – Film Quality Issues
 • Stress (compressive or tensile)
 • Inclusions and other defects
 • Doping or contaminant levels
 – Final Surface Requirements
 • Ultralow surface roughness
 • Extreme planarization, esp. Copper
 • Low defectivity at <0.12 um defect size

• **Pad Issues**
 – Materials (polyurethane, felt, foam, etc.)
 – Properties must be chosen for the job
 – Conditioning method often not optimized
 – Lot-to-lot consistency

• **Slurry Issues**
 – Chemistry optimization often required
 – Mixing and associated inconsistency
 – Shelf life and pot life sometimes very short
 – Slurry distribution system (design, cost, upkeep)
 • Agglomeration and gel formation
 • Filtration is often required
 – Cleaning method specific to slurry and film
 – Waste disposal and local regulations

• **Process Issues**
 – Long list of significant input variables
 • Downforce
 • Platen speed
 • Carrier speed
 • Slurry flow
 • Conditioning method
 – Disk used (material, diamond size, spacing, etc)
 – Force
 – Speed
 – Sweep profile
 – Highly sensitive to local pattern variation
 – Must maintain consistency at high throughput
 – Must optimize for variation of incoming films

• **Integration Issues**
 – Materials Compatibility
 • Electrochemical interactions with two or more metals
 • Film integrity and delamination, esp. low-k
 • Film stack compressibility
 – Interactions with adjacent process modules
 • Photolithography
 • Metal deposition and metal etch
 • Dielectric deposition and etch
 – Electrical design interactions
 • Feature size constraints
 • Interactions with local pattern density
 • Line resistance variation, esp. damascene copper
 • Dielectric thickness variation
 • Contact resistance variation

Many of these influence both performance & repeatability
Past Repeatability

Tungsten CMP Removal Rate & Uniformity

Removal Rate (Ang/min)

Uniformity (% 1-sigma)

- Removal Rate
- Rate UCL
- Rate LCL
- % NU
- % NU UCL
Repeatability Goals

- Requirements often get tighter with next generation devices
- Option 1: Redevelop process to tighten variation
 - Endpoint
 - Integration

Tungsten CMP Removal Rate & Uniformity

- **Removal Rate (Ang/min)**
- **Uniformity (% 1-sigma)**

Options:

- **Option 1**: Redevelop process to tighten variation
- **Option 2**: Find ways to tolerate variation
 - Endpoint
 - Integration
Sources of Variation

- **Familiar Sources**
 - Slurry (pH, particles, etc.)
 - Pads
 - Conditioning disks
 - Wear during pad life
 - Test wafer vs product wafer

- **Less obvious**
 - Contamination
 - Distribution system
 - Pumps & filters
 - Slurry dispense location
 - Source of H2O2
 - Head rebuild technique
 - DI water temperature
 - Metrology instability (Are you chasing a ghost?)
 - Bake/anneal sensitivity
 - Barrier metal grain structure
 - Pattern density / layout

Other war stories?
Cost Introduction

• In early years, CMP was forgiven for being an expensive process because it enabled entire generations of devices.

• Economic reality is now driving cost reduction efforts.

• Costs can be generally divided into 3 categories:
 – Development costs
 – Capital
 – Operating (per wafer pass)
Development Costs

- Classic engineering tradeoff: Speed, Low Cost, or Quality (choose 2)
- Shorter product life means shorter timeline for next gen
- Development $$ have to be amortized over product life

Actions being taken by fabs to control development costs:
- Extreme prioritization and focus (no “science projects”)
- Push early screening and optimization down to suppliers
- Outsource non-critical functions or bring in outside resources
- Alliances and consortia to share next gen development costs
Development Costs

• Ways to reduce CMP development costs
 – Avoid it (extend existing process if possible)
 – Get someone else to pay for it
 – Get someone else to at least share the cost
 – Talk to suppliers and leverage their experience
 – Engage outside resources with expertise
 – Be efficient … Follow a disciplined approach
 – Literature search (web surfing is cheap)
Capital Costs

- Leading edge fabs still spend huge $$$ on WFE
- Older fabs being extended well beyond original design life or being repurposed to other devices
- Pricing factors for new tools depend on the OEM

Actions being taken by fabs to control capital costs:
- Increasingly popular “fab lite” model (or outsource altogether)
- Extend installed base whenever possible (may include upgrades)
- Repurpose or sell certain fabs
- Some choosing to buy refurbished rather than new tools
Operating Costs

- Consumables are an obvious target for cost savings
- Competition among providers enhances price erosion in some markets (e.g. Cu stock slurries)
- Supplier margins being squeezed

Actions being taken by fabs to control operating costs:
- Maximize throughput & minimize CMP polish times (integration)
- Increase slurry dilution and run lowest flow possible
- Extend pad life, especially with optimized conditioning
- Apply price pressure on suppliers (cost alone can justify switch)
CMP: New Definition

- Competitive pressures are increasing in most device markets over time
- Long-term viability for device manufacturers depends on controlling costs at all levels

CMF = Cost Managed Processes
Summary

• **Through Silicon Via Technology (TSV)**
 – Options for conductive materials: Cu, W, Pt, polysilicon, etc.
 – Wafer level requirements typically different than CMOS
 • More demanding for rate/throughput, less demanding for dishing/erosion

• **Diamond CMP**
 – Extremely hard and inert material
 – Roughness below 1nm has been achieved with CMP
 – Demonstrated improvement in RF resonance

• **Opportunities for CMP Improvement**
 – Performance
 – Repeatability
 – Cost
Acknowledgements

• Many thanks to the following:
 – Dorota Temple and Dean Malta of RTI, Inc.
 – Other customers who gave permission to use images and data
 – Terry Pfau, Paul Lenkersdorfer, & Donna Grannis of Entrepix

• For additional information, please contact:

 Robert L. Rhoades
 Entrepix, Inc.
 Chief Technology Officer
 +1.602.426.8668
 rrhoades@entrepix.com
Consumer Drivers

- Since 2005, consumer products have become primary industry driver.
- Short product life cycles.
- Consumers demand More for Less.
- Consumers demand More in Less Space.
- Historically enabled by Moore’s Law – device shrinks & larger wafers.

- Result = Fierce Competition
 + Control Unit Costs
 + Develop Technology Fast
 + Ramp Volume Quickly

Source: 2007 Industry Strategy Symposium – Steve Newberry, CEO, Lam Research Corporation