Power Device Fabrication Using CMP

Gerfried Zwicker, Peter Zitzer, Benjamin Steible and Michael Tack

Fraunhofer Institute for Silicon Technology ISIT
Itzehoe, Germany

contact:
gerfried.zwicker@isit.fraunhofer.de
Applications of CMP

- Classical microelectronics
 - Technology drivers: µ-processors, memory, ASICs, etc.
 - CMP: STI, replacement gates, ILD, W plugs, IMD, Cu metallization, TSV

- Micro-electro mechanical systems (MEMS)
 - Acceleration/angular-rate sensors, DLPs, MOEMS, RF-MEMS, micro machines
 - CMP: smoothing of poly-Si, planarization of sacrificial layers (metals, oxides, polymers), Cu-metallization

- New: Power devices
 - Power MOSFETs, super-junction FETs, "coolMOS", IGBTs
 - CMP: trench gates, W plugs, trench compensation structures, wafer thinning
Power Device Fabrication Using CMP: Outlook

- Power devices: power range and speed
- Power MOSFETs
 - Motivation: energy efficiency improvements
 - Basic structure of power MOSFETs
 - Trench power MOSFETs
 - Manufacturing steps - CMP
 - Super power MOSFETs: charge compensation structures - CMP
- IGBTs
 - Basic structure of IGBTs
 - Ultra-thin IGBTs: manufacturing steps - CMP
- Summary and Outlook
Power Devices

Wikipedia:
Power devices = semiconductor devices that are designed to handle significant power levels

Power MOSFETs

- Power MOSFET (Metal oxide semiconductor field-effect transistor)
 - Controlling or switching device for higher power levels
 - Up to several 100 A, up to 1000 V
 - In contrast to μA-mA range of CMOS devices

- Typical applications:
 - Switching power supplies
 - DC/AC converters for solar panels
 - Power management in portable computers, phones, MP3 players
 - Automotive (solid state relays, motor controllers, electric vehicles, hybrid cars)
 - Household appliances (e.g. induction heaters, regulated refrigeration)
 - Industrial electronics
 - Drives (frequency converters, e.g. in controllers)
Optimization of power MOSFETs

- Motivation: energy saving
 - World-wide electrical energy consumption
 2010 ~ 20,000 TWh
 - Server farms
 2010 ~ 200 TWh (~ 1 % of ww cons.) cooling: 50 %
 ⇔ 80 medium-size power plants (coal)

- Example: efficiency of switching mode power supplies
 Efficiency increase from 80 – 85 % in 2000
to 94 – 96 % in 2010
due to optimized circuit design and optimized power MOSFET devices
⇒ reduced heat production ⇒ reduced cooling ⇒ less CO₂
Power MOSFET

power MOSFETs have a vertical transistor structure! (3-dimensional device)

Typical technology:
CD = 0.35 – 1.0 µm
GOX = 15 – 100 nm
metal: Al, 2 – 5 µm thick
BS metal Ti/Ni/Ag
wafer size: 200 mm
Power MOSFET

„On“ state:
vertical current flow

Ideal device should have

- high conductivity
- fast switching
- small gate charge
- small capacities
Trench Power MOSFET

cell structure

power MOSFET = millions of paralleled transistor cells.
State-of-the-art:
giga-cells / inch2
Trench Power MOSFET

Trench gate manufacturing steps:

- Trench etch (width ≈ 0.5 µm)
- Gate oxidation (10 … 100 nm)
- Poly-Si trench fill (n-doped)
- CMP of poly-Si

poly-Si CMP process:

- high selectivity to oxide (>100 : 1)
- low dishing
Trench Power MOSFET

Contact and metallization manufacturing steps:

- Oxide dielectric & contact etch
- Ti/TiN sputtering & W CVD
- CMP of W

- high selectivity to Ti/TiN allows direct Al metallization

W CMP results: experimental slurry with 10 : 1 selectivity
High Voltage transistor: increase thickness of device!

Higher thickness of so-called drift zone leads to increase of $R_{DS(on)}$

largest impact has $R (n^{-}_{epi})$

Increase the number of charge carriers!

Drawback: reduction of blocking voltage
Introduction of vertical p-doped compensation structures allows higher doping of the voltage-sustaining n_{epi}-layer.
Super Junction Power MOSFET

„On“ state:
current flow

\[n_{\text{epi}} \rightarrow n_{\text{epi}} \]

⇒ reduction of conduction losses by factor 5
Super Junction Power MOSFET

Reverse bias: formation of a pin-diode structure

increase of blocking voltage > 600 V
Super Junction Power MOSFET

Compensation structure manufacturing steps (before trench gate definition):

- Deep trench etch (d: 10 - 25 µm / w: 2 - 4 µm)
- Epitaxy trench fill (p-doped, B, $4 \times 10^{15}\text{cm}^{-3}$)
- CMP of Si
- CMP process: time-controlled or introduction of polish stop

non-selective or high-selective Si-CMP process solutions required
Power MOSFET with Fieldplate Compensation

Alternative:
fieldplate compensation instead of p-doped epitaxial compensation structures:
Power MOSFET with Fieldplate Compensation

Fieldplate compensation manufacturing steps:
- Deep trench etch
- Oxide filling: TEOS dep. 1.5 µm
- Deposition of poly-Si, n⁺ doped, 1 µm
- CMP of poly-Si, stop on oxide
- CMP of oxide (non-selective)
 → CMP problems: wafer bow due to layer strain
 → stress enineering
replacement of n^+ drain by p-doped emitter leads to gate-controlled pnp transistor

substrate thickness 70 µm (600 V)
IGBT (Insulated-Gate Bipolar Transistor)

Manufacturing steps:
- temporary bonding to handle wafer
- backside grinding
- smoothing and sub-surface damage removal: CMP of Si
- backside implant: n-field stop and p-emitter
- activation by annealing
- backside metallization

substrate thickness 70 µm (600 V)
Summary and Outlook

Summary

- Technology of power devices is several nodes behind state-of-the-art microelectronics
- CMP is employed since some years
- Increasing number of CMP applications
- Selective and unselective processes for poly-Si, W, oxide, c-Si, etc.
- Application-specific CMP slurries needed
- Examples shown are devices under development, not yet products
Summary and Outlook

Outlook

- New materials: copper, silicides
- New substrates: GaN, SiC
- Smaller structures: increasing application of CMP planarization
- Growing power devices market
 - ~ $23B in 2010 (~8% of semiconductor market)
 - annual growth rate ~ 7.5% in 2010 (iSuppli)
 - market share power MOSFETs ~ $6B
- IGBTs are used in hybrid / electric cars

from Wikipedia: Tesla Roadster
Acknowledgements

Thanks to

Frank Dietz
Detlef Friedrich
Henning Hansen
Klaus Kohlmann
Jürgen Schliwinski
Frank Windbracke
Heiko Züge

(all from the Fraunhofer ISIT power MOS group)
Thank you for your attention