Effect of Pump Induced Particle Agglomeration On CMP of Ultra Low k Dielectrics

Rajiv K. Singh, F.C. Chang and S. Tanawade, Gary Scheiffele

Materials Science and Engineering
Particle Science Engineering Center
University of Florida, Gainesville FL
Outline

- Introduction and Challenges
- Objectives
- Experimental Design
- Results and Discussion
 - Particle Oversize- Pump Variable Correlations
 - Defectivity Measurements
 - Correlation Defectivity- Oversize
- Conclusions
Back-end ITRS Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Node (nm)</td>
<td>90</td>
<td>65</td>
<td>45</td>
</tr>
<tr>
<td># of Metal levels</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Average dielectric constant</td>
<td>3.1-3.6</td>
<td>2.7-3.0</td>
<td>2.3-2.6</td>
</tr>
<tr>
<td>Dishing Planarity (nm)</td>
<td>30</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Min. defect particle size (nm)</td>
<td>50</td>
<td>32.5</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Grand Challenges ≥ 45 nm/Through 2010

<table>
<thead>
<tr>
<th>Grand Challenges ≥ 45 nm/Through 2010</th>
<th>Summary of Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction of new materials to meet conductivity requirements</td>
<td>Creates integration and material characterization challenges.</td>
</tr>
<tr>
<td>Engineering manufacturable interconnect compatible with new materials and processes</td>
<td>Integration complexity, CMP damage, resist poisoning, dielectric constant degradation.</td>
</tr>
</tbody>
</table>

More Complicated and Lower Defect Based CMP Processing
Particle Challenges in Cu/ULK CMP

- Integration of Ultra low K (ULK) Dielectrics
 - Low Stress Polishing of fragile materials
- Process Simplification
 - Easy Handling (High Stability)
- Enhanced Performance
 - Reduced Defectivity

>> Particle Size/Size Distribution and Oversize Affects CMP Performance
Polishing of Fragile materials

- **Hardness of Low k materials**

<table>
<thead>
<tr>
<th>Materials</th>
<th>Dielectric constant (k)</th>
<th>Hardness (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>4.1</td>
<td>~ 8</td>
</tr>
<tr>
<td>Silicon-oxycarbide</td>
<td>3.3</td>
<td>~ 4</td>
</tr>
<tr>
<td>Porous SiLK (Dow Chemical)</td>
<td>2.2-2.7</td>
<td>~ 0.4</td>
</tr>
<tr>
<td>Porous Silica</td>
<td>1.9-2.2</td>
<td>0.29 – 0.47</td>
</tr>
</tbody>
</table>

- **New materials are mechanically fragile and exhibit poor adhesion with substrate**
Particle Size Distribution Effects

- Polishing Rate
- Defectivity

Concentration

Particle Size
Large Particle Defectivity

$$\delta = \frac{3}{4} \phi \left(\frac{P_{\text{app}}}{2KE} \right)^{2/3}$$

ϕ = Particle Size
E = Young’s Modulus
P = Applied Load
Large Particle Settling Effects

Increased Defectivity Due to Settling
Proposed Adoption of Low K Dielectrics for Various Editions of ITRS Roadmaps

Push out in low k integration due to integration challenges
Pump Effects on CMP Slurries

- Pumps for Slurry Handling Can Significantly Affect Particle Characteristics
 - Particle Size Distribution
 - Oversize Particle Production
 - Critical in Polishing of copper/low k dielectric (more susceptible to scratches)
Pump Based Particle Agglomeration

- **Pumps (Types)**
 - Bellows, Diaphragm, Centrifugal
 - Typically bellows/diaphragm pumps are used have shown significant agglomeration in silica based slurries. (CT Associates)
 - Agglomeration attributed to high shear stress in partial sample volumes.
 - Magnetically levitated centrifugal pumps have shown considerable less agglomeration. (attributed to low shear rates/cavitation effect)
Objectives

- Role of Oversize Particles in Defectivity Generation in Low K/ ultra low k Polishing (most sensitive to oversize particles).
- Evaluation of Agglomeration-free pumping systems (Centrifugal Pumps) for low k/ ultra low K polishing
Outline

- Introduction and Challenges
- Objectives
- **Experimental Design**
- Results and Discussion
 - Particle Oversize- Pump Variable Correlations
 - Defectivity Measurements
 - Correlation Defectivity- Oversize
- Conclusions
Experimental Details – Slurry Loop

- Particle Measurements
 - Dynamic Light Scattering – Average Particle Size
 - Accusizer Optical Particle Counter – Oversize Tail
Experimental Details – CMP

- Polishing Systems
 - IPEC 372 M 8 inch wafers
 - Struers Table Top Polisher

- Wafers
 - TEOS
 - BD1 low k (k = 3.0),
 - LKD 5109 (JSR) ULK (k = 2.2)

- Slurries
 - Planar Solutions – Step II Slurry – Cu 10 K Series

- Metrology
 - Optical Scattering
 - AFM : RMS and R max
 - Optical Microscopy
Outline

- Introduction and Challenges
- Objectives
- Experimental Design
- Results and Discussion
 - Particle Oversize- Pump Variable Correlations
 - Defectivity Measurements
 - Correlation Defectivity- Oversize
- Conclusions
Average Particle Size Vs Slurry turnovers

- Average particle size remains constant for all pumps
- Independent of number of slurry turnovers
Oversize Distribution

- **Bellows (12lit/min)**
 - Significant increase in particle tail in Bellows & Diaphragm pumps
- **Diaphragm (12lit/min)**
 - Insignificant change in particle tail in Centrifugal pump
Normalized Oversize Distribution

- Insignificant increase in oversize particles for centrifugal pump
Oversize Increase Vs Pump Speed

- Centrifugal pump shows least oversize increase
Oversize Increase Vs Turnovers

- Centrifugal pump has least oversize increase in different turnovers and pump speeds
Oversize
[significant change for positive displacement pumps]

Average Size
(no change)
Outline

- Introduction and Challenges
- Objectives
- Experimental Design
- Results and Discussion
 - Particle Oversize- Pump Variable Correlations
 - Defectivity Measurements
 - Correlation Defectivity- Oversize
- Conclusions
Diaphragm Pump
(12 lit/min-1000 turnovers)

<table>
<thead>
<tr>
<th>Material</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD1 Wafer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULK Wafer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Centrifugal Pump
(12 lit/min-1000 turnovers)

<table>
<thead>
<tr>
<th>Material</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD1 Wafer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULK Wafer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AFM
Defectivity vs. Pump Speed

- Increased defectivity with high pump speed
- Centrifugal pump has least defectivity
Defectivity vs. Turnovers

• Increased defectivity with high turnovers for Diaphragm
RMS-Roughness vs. Pump types

- Least roughness observed in Centrifugal pump

BD1 Wafer

<table>
<thead>
<tr>
<th>Pump Type</th>
<th>Rms (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal-1000 turnover</td>
<td>0.05</td>
</tr>
<tr>
<td>Diaphragm-1000 turnover</td>
<td>0.20</td>
</tr>
<tr>
<td>Bellows-1000 turnover</td>
<td>0.15</td>
</tr>
</tbody>
</table>

- 9 liters/min
- 12 liters/min
Surface Damage & Pump Speed

R Max (nm)

Centrifugal-1000 turnover
Diaphragm-1000 turnover
Bellows-1000 turnover

AFM-Centrifugal
12 liters/min

AFM-Diaphragm
12 liters/min

AFM-Bellows
12 liters/min

Legend:
- 9 liters/min
- 12 liters/min
Surface Roughness Vs number of Turnovers

BD1 Wafer-12 liters/min

Rms (nm)

Centrifugal

Diaphragm

AFM-Centrifugal

AFM-Diaphragm

AFM-Centrifugal

AFM-Diaphragm
Oversize Distribution

- Significant increase in particle tail in Bellows & Diaphragm pumps
- Insignificant change in particle tail in Centrifugal pump
Oversize increase Vs Defectivity

- Excellent Correlation between oversize particle increase with RMS roughness and scratch density.
Conclusions

- Bellows and diaphragm pumping systems result in significant agglomeration (oversize particles) of low k slurries. The degree of agglomeration depends on slurry turnovers and pump speed.
- Centrifugal pumps based on magnetic levitation did not show appreciable particle agglomeration in low k slurries.
- Significant Increase in Defectivity (scratches, roughness, particle deposition) were observed in conventional pump processed slurries.
- Least Defectivity observed for Centrifugal pump processed slurries.
- Excellent Correlation between roughness/defect density and the degree of agglomeration.
Acknowledgements

The authors would like to thank Levitronix for their financial support on this project. The authors also thank Christos Monovoukas for his technical input in this project.