

Effects of Slurry Distribution using Diaphragm and Centrifugal pumps on the Defectivity in a Cu CMP Process

S. Hamid, R. Donis

Levitronix Conference, February 2009

To study the effects of scratches on wafers as a function of pump design in a re-circulating slurry distribution system

- Positive displacement pump: Diaphragm
- Centrifugal magnetically levitated pump: Levitronix (BPS-3)

(Comparison of Four Pump Systems on the Particle Size Distribution of Cabot iCue® 600Y75 Slurry

Diaphragm

Leader in High Performance PCMPC Products

Pump Affects on Cabot iCue® 600Y75 Copper CMP Slurry

- Pump Affects on Re-circulating Slurry Distribution System
- BPS-3 Large Particles (>1um) decreases with Increased Turnovers
- Pump A Large Particles Increase with Increased Turnovers

Levitronix BPS-3

Mark Litchy - CT Associates, Inc. 11/8/2006)

Pumps and Their Affects on CMP Defectivity

- CMP slurries that consist of particles and chemicals could be the most critical consumable in the semiconductor industry1,2,
- However, some studies have shown that positive displacement pumps (e.g., bellows and a diaphragm) may generate high shear stress and tend to agglomerate particles during slurry handling.3,6
- Aggregated particles in the slurries not only could reduce the lifetime of filters,7 but could also cause surface defectivity during the CMP process. 8,914

Defectivity vs. Normalized Oversized Particles

(<u>How Pump-Induced Particles Affect Low-k CMP Defectivity</u>, Semiconductor International, September 2008, F.C. Chang, S. Tanawade and Rajiv Singh, Dept. of Materials Science and Engineering and Particle Engineering Research Center, University of Florida, Gainesville, Fla., http://mse.ufl.edu)

Leader in High Performance PCMPC Products

Tool set

- Integrated 200 mm MirraMesa
- Tencor SP1
- KLA 2139
- Consumables
 - Platen 1 & 2 Pads = IC1010, Slurry = C600Y-75
 - Platen 3 Pad = Polytex, Slurry = Hitachi T-805
 - Megasonic = 1:60 CuClean 3.3
 - Brush Module 1 & 2 Brushes = Rippey, CuClean 865
- Blanket Wafer Processing
 - All blanket wafers were polished for 60 sec. at Step 1, then 30 sec. at Step 2
- Pattern Wafer Processing
 - Pattern wafers were all completely clear of unwanted Cu and end pointed with in 3 seconds of each other at step 1
 - Wafers were processed for 40 seconds at step 2

Layout of Re-Circulating Slurry Distribution Loop at the Air Liquide CMP Applications Lab

AIR LIQUIDE

ELECTRONICS

Wafer Data

- Pattern: MIT-854, low-k (BD1)
- Blanket:
 - TEOS
 - Low-k
 - Cu ECD
- All wafers were polished and then cleaned with Air Liquide PCMPC
- C600Y-75 turn over ~ 6,000X
 - Flow rate = (90 L/min)
- T-805 turn over ~ 7,000X
 - Flow rate = (110 L/min)
- After each wafer split the slurry was replaced before the next pump was tested

				Film Type					
		Pump Type	Pattern	TEOS Dummies	TEOS PC	BD1 PC	Cu Dummies	Cu PC	
	ſ	Diaphragm Full Process Qual (particles and MRR)							
Split 1	ł		-	100	-	-	-	-	
		Diaphragm	U	100	U	U	5	U	
		Diaphragm	2	0	3	3	0	3	
		Diaphragm	0	100	0	0	5	0	
		Diaphragm	2	0	3	3	0	3	
		Diaphragm	0	100	0	0	5	0	
		Diaphragm	2	0	3	3	0	3	
			6	300	9	9	15	9	
		Levitronix	onix Full Process Qual (particles and MRR)						
Split 2									
		Levitronix	0	100	0	0	5	0	
		Levitronix	2	0	3	3	0	3	
		Levitronix	0	100	0	0	5	0	
		Levitronix	2	0	3	3	0	3	
		Levitronix	0	100	0	0	5	0	
		Levitronix	2	0	3	3	0	3	
			6	300	9	9	15	9	
		Diaphragm	n Full Process Qual (particles and MRR)						
Split 3									
		Diaphragm	0	100	0	0	5	0	
		Diaphragm	2	0	З	3	0	З	
		Diaphragm	0	100	0	0	5	0	
		Diaphragm	2	0	3	3	0	3	
		Diaphragm	0	100	0	0	5	0	
		Diaphragm	2	0	3	3	0	3	
			6	300	9	9	15	9	

Experimental Data

Leader in High Performance PCMPC Products

Representative TEOS blanket wafer maps with and without scratches: Inspected at 0.12 um

Leader in High Performance PCMPC Products

Representative BD1 blanket wafer maps with and without scratches : Inspected at 0.13 um

Pump Type 🖵

Representative Pattern Wafer Map: Inspected at 0.39px / 0.25um

LotID: GSK50458 WaferID: 22 Inspection Time: 01/09/09 09:52:51 Defect Count: 434 AIR LIQUIDE

ELECTRONICS

Inspection and Data Provided by Independent Source

As Processed Blanket and Pattern Wafer Scratch Defect

Summary

Wafer Scratch Defect Summary

- Slurry Handling Plays an Important Role in CMP process defectivity
 - The experimental data showed that the magnetically levitated pump gave an approximate 10X reduction in scratch defectivity as compared to a similar air-operated double diaphragm pump
 - The post CMP scratch performance was turned "on/off" by simply changing pump type in the slurry distribution handling system
- Data shows slurry handling has the biggest affect on post polish copper and pattern wafers WRT scratches
- Reducing the number of oversize particles (>1um) in CMP slurries can drastically improve post CMP scratch defectivity