

Contribution of Product Sieving to the Passage of High Molecular Weight Species in ATF and TFF Perfusion Cell Cultures

Magdalena Pappenreiter | PhD Candidate

Bilfinger Life Science GmbH | University of Natural Resources and Life Sciences, Vienna

Boston, June 2, 2022

Innovation Management Pharma

New Technologies – ICB-Process skid for manufacturing of bio-based products

The Vision

- Construction of an entire End-to-End process train
 - \rightarrow truly continuous mass flow
 - → Fully automated
 - \rightarrow smallest possible residence time distribution
- 2- Stage advanced automation concept
 - \rightarrow independently working modular process entities
 - → interface to APC solutions
- Industrial relevant showcase
 - → 2 to 10 L scale
 - \rightarrow CHO process producing recomb. mAb

FFG

The product sieving challenge

Perfusion hallmarks – Steady state definition

- Constant nutrient concentrations
- Constant cell concentration
- Continuous, constant harvest of target product

Membrane fouling can have impacts on...

Total product yield and consistent purity

Premature termination of bioprocess

Loss of steady state

Undesired complexity for process integration: variable product conc. Feeding to downstream unit

The product sieving challenge

Membrane fouling can have impacts on...

duct yield and consistent purity

Premature termination of bioprocess

plexity for process integration: variable ng to downstream unit

Methodology – Perfusion cultures

- 200ml working volume
- HyClone ActiPro media with Cell Boost 7a/7b (Cytiva)
- 110cm², 0.2µm, 1mm fiber ID Hollow Fiber (Cytiva)
- 15days+ steady state operation
- Perfusion rate = 1 vvd
- CSPRtarget = 10-20 pL/(cell*day)

Perfusion	Flow rate	Shear rate	Mode of
run	(ml/min)	(S ⁻¹)	operation
#ATF1	400	5200	static
#TFF1	400	5200	static
#TFF2	200/400	2600/5200	dynamic
#ATF2	200	2600	static
#rTFF1	200/400	2600/5200	dynamic
#rTFF2	200/400	2600/5200	dynamic

State of the art

Head to head comparison ATF and TFF

- Comparison study evolved similar performance in
 - Cell growth
 - Viability
 - Cell specific productivity

Perfusion	Flow rate	Shear rate	Mode of
run	(ml/min)	(S ⁻¹)	operation
#ATF1	400	5200	static
#TFF1	400	5200	static

Head to head comparison ATF and TFF

 Difference in mAb titer due to high product retention in TFF bioreactor

- Product sieving minimum
 - 85% in #ATF1
 - 50% in **#TFF1**

TFF process improvement

• Application of dynamic recirculation flow rate:

TFF recipe control

	Phase 1	Phase 2
Flow rate	200 mlpm	400 mlpm
Time	180 sec	120 sec

Product sieving improvement through dynamic TFF

- #TFF2 bioreactor titers similar to #TFF1
- #TFF2 achieved higher harvest titers

Perfusion	Flow rate	Shear rate	Mode of
run	(ml/min)	(S ⁻¹)	operation
#ATF1	400	5200	static
#TFF1	400	5200	static
#TFF2	200/400	2600/5200	dynamic

Product sieving improvement through dynamic TFF

Pronounced sieving difference between ATF and TFF

Perfusion	Flow rate	Shear rate	Mode of
run	(ml/min)	(S ⁻¹)	operation
#ATF1	400	5200	static
#TFF1	400	5200	static
#TFF2	200/400	2600/5200	dynamic

Product sieving improvement through dynamic TFF

- Pronounced sieving difference between ATF and TFF
- Improvement of product sieving in #TFF2

Perfusion	Flow rate	Shear rate	Mode of
run	(ml/min)	(S ⁻¹)	operation
#ATF1	400	5200	static
#TFF1	400	5200	static
#TFF2	200/400	2600/5200	dynamic

How can we fully address the product sieving issue using magnetic levitating pumps?

Reverse TFF for uniform TMP distribution

rTFF alleviates product retention

• Reverse TFF modus as alternative to commercial ATF

Perfusion	Flow rate	Shear rate	Mode of
run	(ml/min)	(s ⁻¹)	operation
#ATF2	200	2600	static
#rTFF1	200/400	2600/5200	dynamic
#rTFF2	200/400	2600/5200	dynamic
#rTFF2 200/400 *Cycle time = 30 sec			

rTFF alleviates product retention

- Comparable performance between ATF and rTFF
- Productvity lower in #rTFF2 (higher generation no. of cells)

 Product sieving reduced to a minimum over long process duration

- Process performance similar in different modes of operation (ATF, TFF, rTFF)
- Magnetically levitating pumps did not influence cell growth, viability, productivity
- TFF performance comparable to ATF except for product retention
- Dynamic recirculation generates pulsating TMP and is therefore benefical to reduce reversible membrane fouling
- Reverse TFF (rTFF) as a novel concept to alleviate product retention

What influence does product sieving have on the purity and product quality of the mAb harvest in a perfusion process?

... and can we monitor or even control it?

HMWS and aggregates

HMWS = high molecular weight species

- Presence of HMWS and aggregates reduces product purity
- Increased HMWS concentration decreases product yield and increases complexity of downstream purification (especially in an ICB!)
- Protein aggregation could lead mAbs to stimulate immune responses in patients (CQA)

Investigation of protein impurities

• SEC-HPLC allows peak separation between protein monomers, HMW and LMW species

Investigation of protein impurities

Different passage of HMWS in ATF and TFF perfusion systems

Amount of protein impurities in ATF and TFF

- Purity of TFF harvest larger than ATF and rTFF (>98%)
- 100 80 Monomer (%) 60 40 20 \bigcirc #ATF1 #TFF1 #TFF2 #rTFF2 0 12 8 10 14 16 6 Time (days) Solid line... bioreactor; dashed... harvest

- HMW species < 5% in harvest using TFF mode
- HMW species approx. 15% in ATF and rTFF

Comparison of steady states

- Highest monomer purity in TFF harvest
- Lowest HMWS passage in TFF mode
- Purity depending on product sieving and filtration mode

 ATF and rTFF generally results in higher product yield (less product retention)

HMWS and product sieving

 Sieving and perfusion mode influences HMWS passage to Harvest

- Correlation between product sieving and total HMWS in harvest
- Product purity can be estimated via product sieving

Concluding remarks

- Amount of HMW impurities in perfusion harvest differ from ATF to TFF mode
- Specific HMW species only get retained by TFF mode
- Product sieving correlates with the passage of HMW species into perfusion harvest
- Higher product yield does not necessarily mean higher product purity!

PROCESS DECISION?!YieldPurityATFTFF

Acknowledgements

- Prof. Alois Jungbauer
- Prof. Karola Vorauer-Uhl
- Gabriele Recanati
- Patrick Scheidl

- Prof. Véronique Chotteau
- Hubert Schwarz
- Johanna Pechan

- Bernhard Sissolak
- Wolfgang Dornfeld
- Christian Zabik

AdBIOPRO

[1] Zhou H. et al. (2014). Methods and Systems for processing a cell culture. *European Patent No. EP 3 047 013 B1* <u>https://data.epo.org/publication-server/document?iDocId=6616150&iFormat=0</u>

[2] Kudugunit S.K. et al (2017). Alternating Tangential Flow Rapig Harvesting. *WIPO No. WO 2018/022661 A1* <u>https://patentimages.storage.googleapis.com/41/99/ec/01ba25440ac975/WO2018022661A1.pdf</u>

[3] Schwarz H. et al (2020). Small-scale bioreactor supports high cell density HEK293 cell perfusion culture for the production of recombinant Erythropoietin. J Biotechnol 309: 44-52

[4] Pinto N et al. (2020). Impact of micro and macroporous TFF membranes on product sieving and chromatography loading for perfusion cell culture. Biotechnol Bioeng 117(1): 117-124

[5] Wang S et al. (2017) Shear Contributions to Cell Culture Performance and Product Recovery in ATF and TFF Perfusion Systems. J Biotechnol 246

[6] Clincke et al. (2013) Very high cell density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I Effect of the Cell density on the Process. Biotechnol Progress 29(3)

[7] Karst D et al (2016) Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J 110

Back up slides

Firmenname | Titel der Präsentation

Page 28

The story of fouling

Factors influencing the fouling rate

1. Low crossflow / high TMP

GEL LAYER

- 2. Shear rate
- 3. Cell viability

CELL DEBRIS

Boston 22 | Pappenreiter

Investigation of protein impurities

Different passage of HMWS in ATF and TFF perfusion systems

TMP profile dynamic recirculation

REVERSIBLE fouling was the driving factor for product retention

- Hypothesis is that local TMP is continuously changing when applying dynamic recirculation flow rates
- Pulsating TMP influences the deposition of particles
- With dynamic recirculation the deposit layer is loosens and becomes more permeable
- Cell viability was similar in all experiments → amount of cell fragments is the same and not responsible for the difference in sieving profiles

