User Manual for PuraLev<sup>®</sup> iF30SU www.levitronix.com



## PuraLev<sup>®</sup> iF30SU

Pump Pressure / Flow: 1.0 bar / 7.7 l/min Single-Use Flow Sensor LFS-03SU-F1: 0.8 l/min Single-Use Flow Sensor LFS-06SU-F1: 8 l/min

# **USER MANUAL**



This manual contains information necessary for the safe and proper use of the *PuraLev® iF30SU*. Included are specifications for the standard configurations of the flow control system and instructions regarding its use, installation, operation, adjustment, inspection and maintenance. For special configurations of the flow control system refer to accompanying information. If the flowmeters must be configured for other parameter settings, then the *Levitronix® Service Software* version *V2.0.5.0* (with according manual *Levitronix®* Doc.# *PL-4047-00*) is needed. Familiarize yourself with the contents of the manual to ensure the safe and effective use of this product. After reading this manual, please store the manual where the personnel responsible for operating the flow control system can readily refer to it at any time.

PL-4078-00, Rev01, DCO#23-191



## **Table of Contents**

| 1 | 5   | SAFETY PRECAUTIONS                                           | 3  |
|---|-----|--------------------------------------------------------------|----|
| 2 | 5   | SPECIFICATIONS                                               | 4  |
|   | 2.1 | Specification of Components                                  | 4  |
|   | 2.2 | System Overview and General Specification                    | 6  |
|   | 2.3 | General Environmental Conditions                             | 8  |
|   | 2.4 | Pressure-Flow Curves                                         | 8  |
|   | 2.5 | Maximum Static Pressure for Pump Heads                       | 9  |
|   | 2.6 | Flow Control Specifications                                  | 9  |
|   | 2.7 | Basic Dimensions of Main Components                          | 10 |
| 3 | E   | ENGINEERING INFORMATION                                      | 13 |
|   | 3.1 | Power Supply and Consumption                                 | 13 |
|   | 3.2 | Temperature Monitoring                                       | 13 |
|   | 3.3 | Thermal Management                                           | 14 |
|   | 3.4 | Hydraulic Circuit Design                                     | 16 |
| 4 | I   | INSTALLATION                                                 | 17 |
|   | 4.1 | Electrical Installation of Stand-Alone Model                 | 17 |
|   | 4.2 | Electrical Installation of EasyConnect Model                 | 20 |
|   | 4.3 | Electrical Installation of OEM Model                         | 25 |
|   | 4.4 | Electrical Installation of Flow Sensor                       | 28 |
|   | 4.5 | Mechanical Installation – General Instructions               | 29 |
|   | 4.6 | Mechanical Installation of Stand-Alone and EasyConnect Model | 29 |
|   | 4.7 | Mechanical Installation of OEM Model                         | 29 |
|   | 4.8 | Mechanical Installation of Flow Sensor                       | 30 |
| 5 | C   | OPERATION                                                    | 31 |
|   | 5.1 | Operation of Stand-Alone Model                               | 31 |
|   | 5.2 | Operation of EasyConnect and OEM Model                       | 32 |
|   | 5.3 | Zero Adjustment of Flow Sensor                               | 34 |
| 6 | I   | INSTRUCTIONS FOR USE OF PUMP HEAD                            | 35 |
|   | 6.1 | Description and Preparation                                  | 35 |
|   | 6.2 | General Warnings and Cautions                                | 35 |
|   | 6.3 | Mounting of Pump Head                                        | 36 |
|   | 6.4 | Removal of Pump Head                                         | 36 |
|   | 6.5 | Assembly into Hydraulic Circuit                              | 36 |
| 7 | ٦   | TROUBLESHOOTING                                              | 37 |
|   | 7.1 | Trouble Shooting with Stand-Alone Model                      | 37 |
|   | 7.2 | Trouble Shooting with EasyConnect and OEM Models             | 37 |
| 8 | ٦   | TECHNICAL SUPPORT                                            | 37 |
| 9 | A   |                                                              | 38 |
|   | 9.1 | Regulatory Status                                            | 38 |
|   | 9.2 | Symbols and Signal Words                                     | 39 |
|   |     |                                                              |    |



## **1 Safety Precautions**

The *PuraLev*<sup>®</sup> *iF30SU* flow control system is designed to be used in industrial production machines and laboratory equipment containing hydraulic circuits. Typical applications are Single-Use Bioprocessing manufacturing equipment. Installation shall be done by qualified personnel only. Following safety precautions and all "CAUTION", "WARNING" and "DANGER" indications in the relevant sections shall be followed.

## CAUTION

Do not under any circumstances open the driver. Levitronix<sup>®</sup> does not assume responsibility for any damage, which occurs under such circumstances.



## CAUTION

High magnetic field strength of pump impeller.

The flow control system contains a rotor magnet with high field strength. This may alter or damage the calibration of sensitive electronic devices and measuring instruments in the immediate surroundings. Keep at a safe distance from computers, monitors and all magnetic data storage media (e.g. disks, credit cards, audio and video tapes etc.)



# 

#### Hazardous voltage may be present.

In case of the usage of an inadequate AC/DC power supply, mains voltages may be present (even if the system is designed for up to 24 VDC). The usage of a galvanic separated power supply, which is certified by a 3<sup>rd</sup> party (UL or CE), is highly recommended.

Do not under any circumstances open the powered driver.



## A WARNING

### High magnetic field strength of pump impeller.

The flow control system contains a rotor magnet with high field strength. Pacemakers may be influenced, and magnetic forces may lead to contusions. Keep distance to pacemakers and handle impeller with care.





## A WARNING

### TOXIC CHEMICALS may be present.

When using the system to pump chemicals skin contact and toxic gases may be hazardous to your health. Wear safety gloves and other appropriate safety equipment.





## 2 Specifications

## 2.1 Specification of Components





Figure 1: Flow control system with standard main components



Figure 2: General standard accessories



Figure 3: Standard cables

| System Name  | Article # | Pump Head Socket | Flow Control Driver              | Note                                                               |
|--------------|-----------|------------------|----------------------------------|--------------------------------------------------------------------|
| PLD-iF30SU.1 | 100-91223 | PHS-i30.1        | IFD-30.3-02                      | OEM - Driver, one multi-purpose connector, pump head socket.       |
| PLD-iF30SU.2 | 100-91224 | PHS-i30.1        | IFD-30.4-02 (MBP-i30.1 included) | EasyConnect - Driver with interface connectors, pump head socket.  |
| PLD-iF30SU.3 | 100-91225 | PHS-i30.1        | IFD-30.5-02 (MBP-i30.1 included) | Stand-Alone - Driver with integrated user panel, pump head socket. |

Table 1: Standard driver system configurations

| os.      | Component                                                  | Article Name                                                     | Article #              | Characteristics                                                       | Value / Feature                                                                                                                                     |
|----------|------------------------------------------------------------|------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                            |                                                                  |                        | Material Impeller / Housing<br>Housing Sealing<br>In-/Outlet Fittings | Polypropylene (FDA, USP Class VI, BSE/TSE/Animal free)<br>Infrared welding<br>Barb 3/8" or Triclamp 3/8" for tubing with typical ID = 1/4"          |
| 1a<br>1b | Single-Use<br>Pump Head                                    | DCP-30.2 (Barb) <sup>2</sup><br>DCP-30.1 (Triclamp) <sup>2</sup> | 100-90968<br>100-90959 | Max. Flow<br>Max. DiffPressure<br>Max. Viscosity<br>Max. Liquid Temp. | 7.7 liters/min / 2.0 gallons/min<br>1.0 bar / 14.5 psi<br>40 cP<br>60 °C / 140 °F                                                                   |
|          |                                                            |                                                                  |                        | Wet Pump Volume/Surface                                               | 7.7 ml / 55.9 cm <sup>2</sup>                                                                                                                       |
|          |                                                            |                                                                  |                        | Sterilization Methods                                                 | Gamma radiation up to 40kGy                                                                                                                         |
| 2a       | Integrated Flow<br>Control Driver<br>("OEM Model")         | IFD-30.3-02                                                      | 100-10130              | Voltage, Power<br>Housing<br>Interfaces<br>Standard Firmware          | 24 VDC ±10%, 35 W<br>Epoxy coated Aluminum, PP+GF for bottom lid, IP65 <sup>1</sup><br>PLC, RS485 with Modbus RTU protocol and flow sensor<br>K2.48 |
| 2b       | Integrated Flow<br>Control Driver<br>("EasyConnect" Mod.)  | IFD-30.4-02<br>(MBP-i30.1 included)                              | 100-10131              | Housing<br>Interfaces<br>Standard Firmware                            | Epoxy coated Aluminum, PP+GF for bottom lid, IP65<br>2x Fieldbus RS485/Modbus RTU protocol, PLC, power supply and flow senso<br>K2.48               |
| 2c       | Integrated Flow<br>Control Driver<br>("Stand-Alone" Model) | IFD-30.5-02<br>(MBP-i30.1 included)                              | 100-10132              | Housing<br>Interfaces<br>Standard Firmware                            | Epoxy coated Aluminum, PP+GF for bottom lid, IP65<br>User panel with 3 user buttons, PLC, power supply and flow sensor<br>K2.48                     |
| 3        | Pump Head Socket                                           | PHS-i30.1                                                        | 100-90947              | Mounting Type<br>Material<br>Assembly Screws                          | Bayonet type with locking pin<br>Anodized Aluminum<br>4 pcs M3 x 6 mm (Stainless Steel, INOX A4)                                                    |

 Table 2: Specification of standard components

 Note 1: Designed and tested for IP67.
 Note 2: Gamma irradiated and sterile fittings version available (see product literature for PuraLev-i30SU).

| Pos.                 | Component                                         | Article Name                                                                                       | Article #                                        | Fitting       | Wet Material                                                                                | Note                                                                                                                                                      |
|----------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4a<br>4b<br>5a<br>5b | LEVIFLOW <sup>®</sup> Single-<br>Use Flow Sensors | LFS-03SU-Z-F1<br>LFS-03SU-Z-F1-SC1 <sup>1</sup><br>LFS-06SU-Z-F1<br>LFS-06SU-Z-F1-SC1 <sup>1</sup> | 100-30423<br>100-30470<br>100-30425<br>100-30445 | Triclamp 3/8" | Polypropylene (FDA, USP Class VI,<br>BSE/TSE/Animal free)<br>Gamma stable for up to 40 kGy. | See Levitronix <sup>®</sup> technical brochure of<br>LFS-SU single-use sensor series for<br>more detailed specifications and for<br>other configurations. |

Table 3: Specification of LEVIFLOW<sup>®</sup> single-use high-precision (1% accuracy of reading) flow sensors compatible with IFD-30 drivers Note 1: Extended calibration for wider 1% accuracy range. Note 2: All flow sensors available with gamma irradiation (see LEVIFLOW<sup>®</sup> product literature).

| Pos.       | Component                                  | Article Name                                                                         | Article #                                                     | Characteristics                                                                                                           | Value / Feature                                                                                                                                                                                                                                                    |
|------------|--------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6          | Mounting Base Plate                        | MBP-i30.1                                                                            | 190-10313                                                     | Material / Mounting<br>Screws                                                                                             | PP+GF / 2 pieces, stainless steel FEP coated, M3 x 10 mm                                                                                                                                                                                                           |
| 7a         | AC/DC Power Supply                         | TPC 055-124 (Traco)                                                                  | 100-40014                                                     | Voltage Output / Input<br>Basic Dimensions<br>Certification or Standards                                                  | 24 VDC with 55 W / 85–264 VAC, 47-63 Hz<br>45 x 90 x 96.5 mm (mountable on DIN rail 35 mm)<br>UL, CSA, CB, Semi F47                                                                                                                                                |
| 7b         | Desktop AC/DC<br>Power Supply              | AC/DC Power Supply<br>VEC50US24 HR30                                                 | 100-40015                                                     | Voltage Output / Input<br>Dimensions / Cable Spec.<br>Safety Approvals                                                    | 24VDC, 50W / 90 – 264 VAC, 47-63 Hz<br>116 x 52 x 31 mm / Cable length 1.2m<br>IEC60950-1, ENK0950-1, UL/CUL60950-1                                                                                                                                                |
| 7c         | AC Mains Cables<br>(for desktop supply 7b) | AMC-1.1 (2m)<br>AMC-1.2 (2.5m)<br>AMC-1.3 (2.5m)<br>AMC-1.4 (2.5m)<br>AMC-1.5 (2.5m) | 190-10331<br>190-10332<br>190-10333<br>190-10334<br>190-10335 | Approvals and Country<br>Approvals and Country<br>Approvals and Country<br>Approvals and Country<br>Approvals and Country | UL, cUL, US, Canada<br>CB, Germany, Denmark, Norway, Finland, Belgium, Netherland, Sweden, Austria<br>PSE, Japan<br>Switzerland<br>CE, United Kingdom                                                                                                              |
| 8          | USB to RS485<br>Adaptor-TR Isolated        | YN-485I-TR                                                                           | 100-30392                                                     | Structure/Design<br>Purpose                                                                                               | USB connector (A) with termination resistor and cable (2m) with connector (B and C)<br>for external RS485 wire connection. Magnetically isolated. Cable length is 2m.<br>Included is a USB space saver cable (D).<br>Communication over fieldbus of driver with PC |
| 9          | IPS Cable Power<br>3 Wires                 | ICP-1.1-50 (5 m)                                                                     | 190-10342                                                     | Cable Material / Wires<br>Connection In / Out<br>Main Purpose                                                             | PVC jacket / 3x 0.5 mm <sup>2</sup> (only 2 wires used, 1 is cut)<br>Open wires / Circular Hirose type to driver<br>Connection of power supply to "Stand-Alone" and "EasyConnect" drivers                                                                          |
| 10a        | IPS Cable Signal<br>6 Wires                | ICS-1.1-01 (0.1 m)<br>ICS-1.1-10 (1 m)<br>ICS-1.1-30 (3 m)                           | 190-10343<br>190-10344<br>190-10345                           | Cable Material / Wires<br>Connection In / Out<br>Main Purpose                                                             | PVC jacket / 6x 0.08 mm² and shielding<br>Circular Hirose type / Circular Hirose type<br>Fieldbus connection between "EasyConnect" drivers and flow sensor connection.                                                                                             |
| 10b<br>10c | IPS Cable Signal<br>6 Wires                | ICS-1.2-50 (5 m)<br>ICS-1.3-50 (5 m)                                                 | <b>190-10346</b><br>190-10389                                 | Cable Material / Wires<br>Connection In / Out<br>Purpose ICS-1.2 / ICS-1.3                                                | PVC jacket / 6x 0.08 mm² and shielding<br>Connector with screw type plug for open wire connection / Circular Hirose type<br>Fieldbus connection to "EasyConnect" driver / To PLC of "Stand-Alone" driver.                                                          |
| 11         | IPS Cable Signal<br>12 Wires               | ICS-2.1-50 (5 m)                                                                     | 190-10347                                                     | Cable Material / Wires<br>Connection In / Out<br>Main Purpose                                                             | PVC jacket / 12x 0.14 mm <sup>2</sup> and shielding<br>Connector with screw type plug for open wire connection / Circular Hirose type<br>General connection to PLC of "EasyConnect" drivers.                                                                       |
| 12         | IPS Cable Hybrid<br>15 Wires               | ICH-1.1-30 (3 m)<br>ICH-1.1-50 (5 m)                                                 | 190-10386<br>190-10341                                        | Cable Material / Wires<br>Connection In / Out<br>Main Purpose                                                             | PVC jacket / 2x 1.5 mm <sup>2</sup> for supply wired, 13x 0.14 mm <sup>2</sup> for signal and shield wire<br>Open wires / Circular hybrid connector for driver connection<br>General connection integrated driver connector of to "DEM" driver models.             |
| 13         | Fieldbus Termination<br>Connector          | FTC-1.1                                                                              | 190-10348                                                     | Materials<br>Main Purpose                                                                                                 | PPS for connector housing and FPM for sealing.<br>Termination of fieldbus.                                                                                                                                                                                         |
| 14         | Mounting Kit                               | LMK-1.2                                                                              | 100-91478                                                     | Material / Structure<br>Main Purpose                                                                                      | Anodized Aluminium / Screw locking concept<br>For mouting of LFS-03SU-F1 and LFS-06SU-F1 flow sensors.                                                                                                                                                             |
| 15         | User Panel                                 | LUI-B.1-01                                                                           | 100-30448                                                     | Interface / Housing Rating<br>Standard Firmware                                                                           | RS485 / IP65<br>A3.00                                                                                                                                                                                                                                              |

Table 4: Specification accessories

## 2.2 System Overview and General Specification

## 2.2.1 System Configuration for Stand-Alone Model

*Figure 4* illustrates the system configuration of the *Stand-Alone* model with integrated user panel and buttons to set the flow manually. The driver also contains a PLC interface for remote control by analog/digital signals. Various accessories are available like a desktop power supply with relevant power cable and signal cables to connect to the PLC.

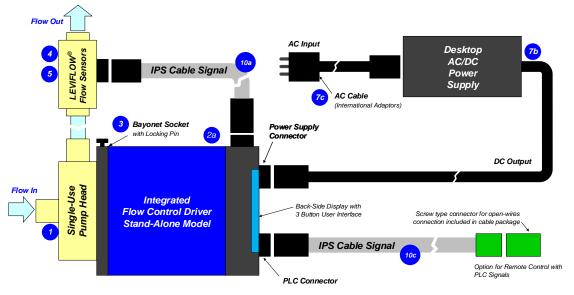
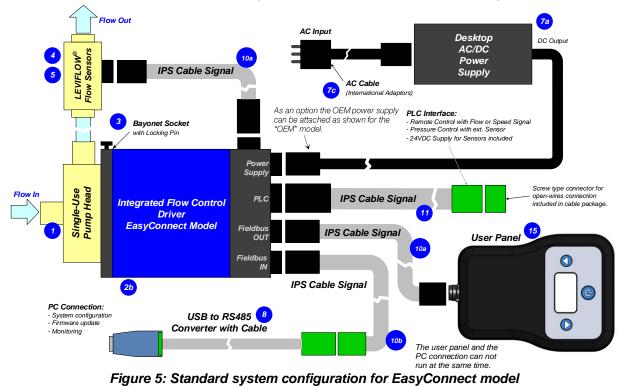




Figure 4: Standard system configuration for Stand-Alone model

## 2.2.2 System Configurations for *EasyConnect* Model

The *EasyConnect* model with relevant cable accessories is designed to realize various interface configurations with minimal setup effort. The PLC interface allows remote control by analog/digital signals. The Fieldbus interface enables remote control over a user panel, PC or other devices with Modbus protocol.



PL-4078-00, Rev01, DCO#23-191



Two Fieldbus connectors (IN and OUT) allow to setup arrays of multiple flow controllers. Therefore, blending configurations as shown in *Figure 6* can be realized.

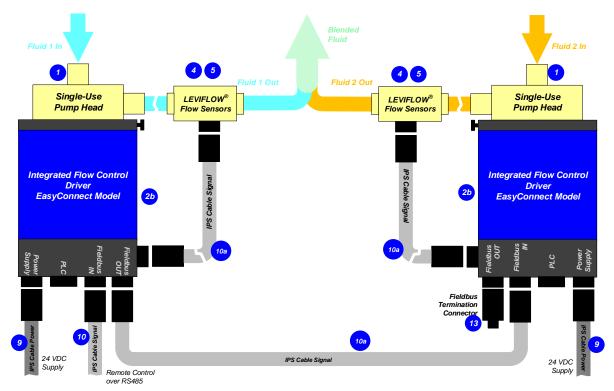
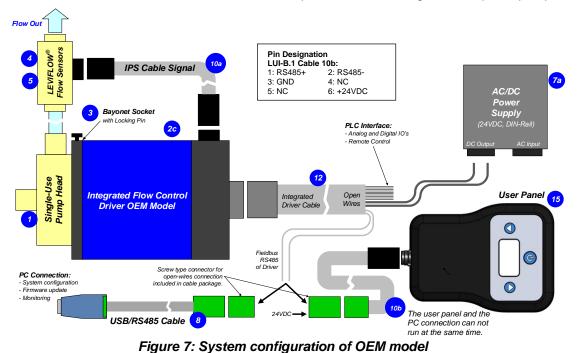
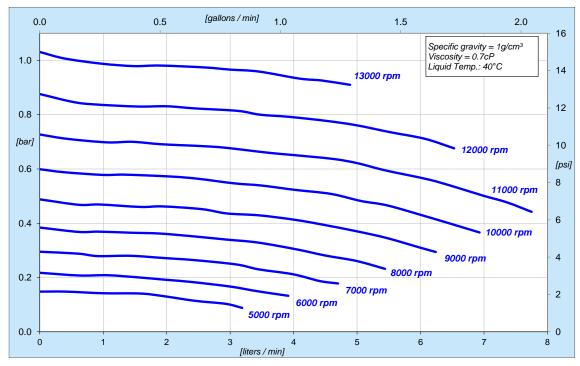




Figure 6: Flowcontrol array for blending applications with EasyConnect models

## 2.2.3 System Configurations for OEM Models

The *OEM* model, with one integrated driver connector only, is designed for compact integration into an equipment. The flow can precisely be set via an analog input. Various digital inputs and outputs allow controlling and monitoring of the system. A *RS485 (Modbus)* enables communication with a user panel or a PC with the *Levitronix®* Service Software. Hence parameterization, firmware updates and failure analysis are possible. The *RS485* can also be used as a fieldbus to implement more intelligent concepts of pump control.

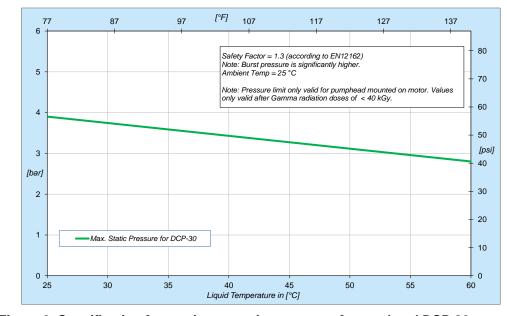



PL-4078-00, Rev01, DCO# 23-191

## 2.3 General Environmental Conditions

| Usage                                                                       | Indoor                                                                                          |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Altitude                                                                    | Up to 2000 <i>m</i>                                                                             |  |
| Operating ambient temperature                                               | 0 to 40 °C                                                                                      |  |
| Storage ambient temperature<br>(Extremes for Transportation)                | -20 to 80 °C<br>-20 to 70 °C for single-use pump head                                           |  |
| Operating humidity range (relative humidity)                                | 15 – 95% (non-condensing)                                                                       |  |
| Storage humidity range (relative humidity)<br>(Extremes for Transportation) | 15 – 95% (non-condensing)                                                                       |  |
| Normal storage conditions                                                   | Ambient temp.: 20 to 30 °C<br>Relative humidity: 50% (non-condensing)                           |  |
| DC supply fluctuations                                                      | $\pm$ 10% of nominal voltage                                                                    |  |
| Transient over-voltages typically present on the mains supply               | Surge immunity according to EN 61000-4-5<br>(tested together with certified AC/DC power supply) |  |
| Pollution degree                                                            | 2                                                                                               |  |

#### Table 5: Environmental conditions for flow control system


## 2.4 Pressure-Flow Curves



## Figure 8: Pressure/flow rate curves

(Typical curves measured with DCP-30.1 pump head.)





## 2.5 Maximum Static Pressure for Pump Heads

## 2.6 Flow Control Specifications

| Type Flow Controller<br>Characteristics                                             | PuraLev <sup>®</sup> iF30SU<br>with LFS-03SU-F1   | PuraLev <sup>®</sup> iF30SU<br>with LFS-03SU-F1-SC1 | PuraLev <sup>®</sup> iF30SU<br>with LFS-06SU-F1 | PuraLev <sup>®</sup> iF30SU<br>with LFS-06SU-F1-SC1 |
|-------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| Flow Range [l/min]                                                                  | 0 – 0.8                                           | 0-0.8                                               | 0 – 8 (7.7 for pump)                            | 0 – 8 (7.7 for pump)                                |
| Accuracy of Reading (at 20°C fluid temperature)<br>Note: Repeatability < Accuracy/2 | > 35 ml/min: ±1%<br>< 35 ml/min: <i>Figure 10</i> | > 6 ml/min: ±1%<br>< 6 ml/min: 0.06 ml/min          | > 1.7 l/min: ±1%<br>< 1.7 l/min: ±17 ml/min     | > 0.075 l/min: ±1%<br>< 0.075 l/min: 0.75 ml/min    |
| Response Time: Step from 10 – 90% of full scale.                                    | < 1s <sup>1</sup>                                 | < 1s 1                                              | < 1s 1                                          | < 1s <sup>1</sup>                                   |
| Fluid Temperature / Ambient Temperature                                             | Normal range: 10 – 60                             | °C ( 50 – 140 °F ) / 0 -                            | - 40 ºC (32 – 104 ºF)                           |                                                     |

#### Table 6: Specifications of flow controller systems

Note 1: Values for flow control parameters, which are optimized to the specific hydraulic circuit. Default parameters are tuned for general flow control stability and may have higher values.

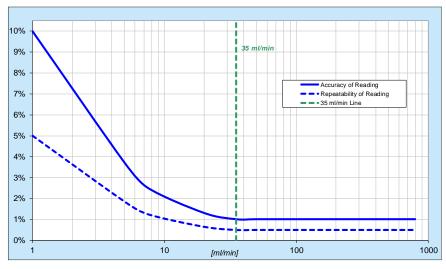
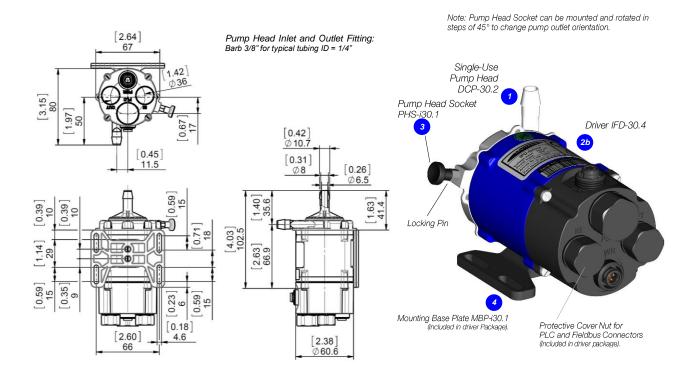
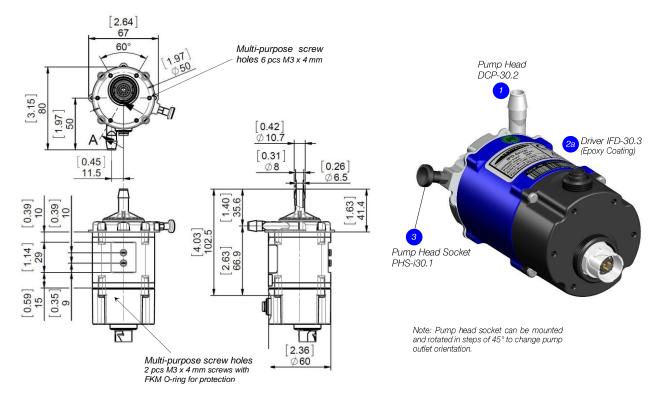


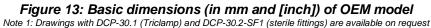

Figure 10: Accuracy and repeatability for single-use sensor LFS-03SU-F1

Figure 9: Specification for maximum static pressure of pump head DCP-30 Note 1: Pressure limits only valid for pump head mounted on motor and do not account for tubing limits attached to the fittings. Note 2: The above chart is also applicable to the DCP-30.2-SF1-G25 with sterile fittings.



## 2.7 Basic Dimensions of Main Components



Figure 11: Basic dimensions (in mm and [inch]) of Stand-Alone model Note 1: Drawings with DCP-30.1 (Triclamp) and DCP-30.2-SF1 (sterile fittings) are available on request.











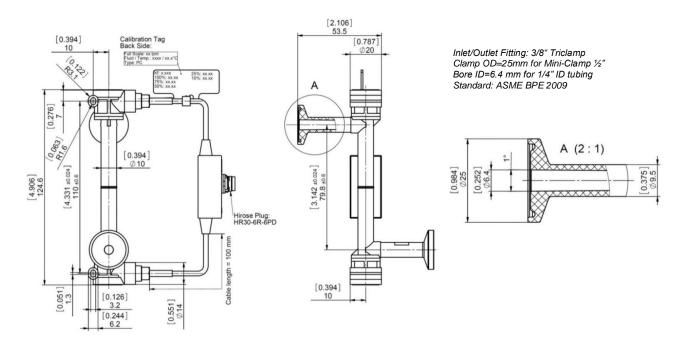



Figure 14: Dimensions for LFS-03-Z-F1 and LFS-06SU-Z-F1 flow sensors (in mm and [inch])

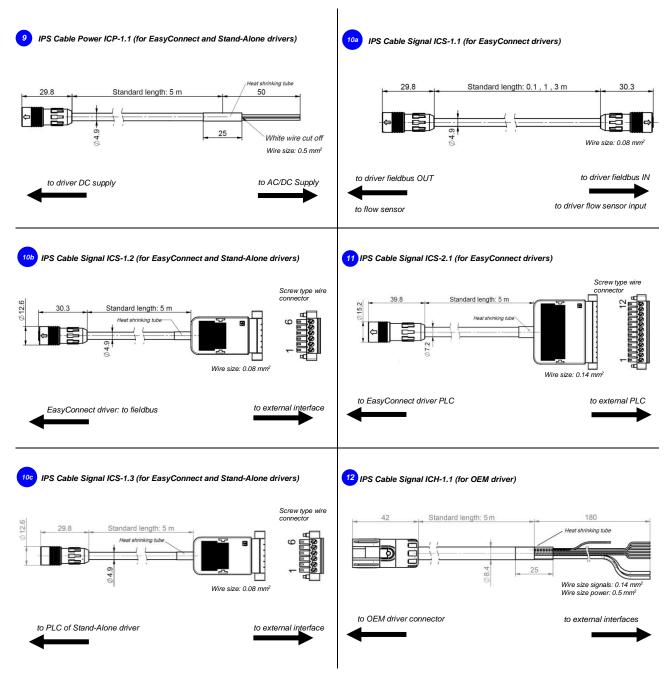



Figure 15: Basic dimensions and specifications of standard cables

| Cable  | Minimum Bending Radius | Minimum Bending Radius |
|--------|------------------------|------------------------|
| Jacket | Permanent Installation | Sometimes Moved        |
| PVC    | 7x Cable OD            |                        |

 Table 7: Specifications for min. bending radius of cables

Note 1: If not mentioned explicitly all the cables are not suited for constant dynamic bending and movement!

LEVITRONIX

LEVITRONIX

## 3 Engineering Information

## 3.1 Power Supply and Consumption

## 3.1.1 Power Consumption

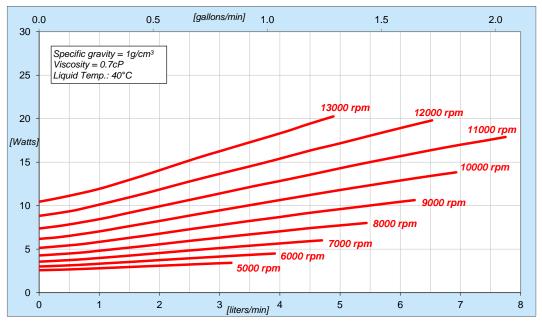



Figure 16: Electrical power consumption Note 1: Typical curves measured with DCP-30.1 pump head.

## 3.1.1 Inrush Current

When selecting a AC/DC power supply the inrush currents (currents during power-on) shown in *Table 8* shall be considered. If the specifications of the power supply are unclear a test with multiple power-on cycles is recommended to assure proper operation.

| Situation                     | <i>ft</i> Value in [A <sup>2</sup> s] | Peak Value in [A] |  |
|-------------------------------|---------------------------------------|-------------------|--|
| Driver with 0.5m cable length | 3.5                                   | 216               |  |
| Driver with 5 m cable length  | 1.7                                   | 114               |  |

Table 8: Inrush currents of power supply driver during power on of driver

 (Typical values measured with OEM pump driver model at 24 VDC + 10%.)

## 3.1.2 Evaluation of Power Supplies

If other power supplies than the standard specified ones are used, it is recommended to evaluate them under demanding operating situations like fast braking from maximum speed and during power on and take-off of the impeller.

## 3.2 **Temperature Monitoring**

To avoid overheating of the system, the controller and motor temperatures within the driver are monitored. If one of both temperatures exceeds  $80^{\circ}C$  ( $176^{\circ}F$ ) for a period of more than 10 minutes, the system goes into an error state and the pump stops. At  $90^{\circ}C$  ( $194^{\circ}F$ ), the system stops immediately.

If 65°C is exceeded a warning is given within the driver announcing to the user that the driver is running near the thermal limit (see explanation in Section 3.3). For the EasyConnect and OEM models the warning signal can be monitored with the Levitronix<sup>®</sup> Service Software or configured on one of the digital outputs. For the Stand-Alone model the temperature can be monitored on the display.



## 3.3 Thermal Management

The driver temperature depends on the ambient and liquid temperature, as well as on the hydraulic operation point. *Figure 17* and *Figure 18* illustrate the temperature characteristics of the motor depending on these parameters.

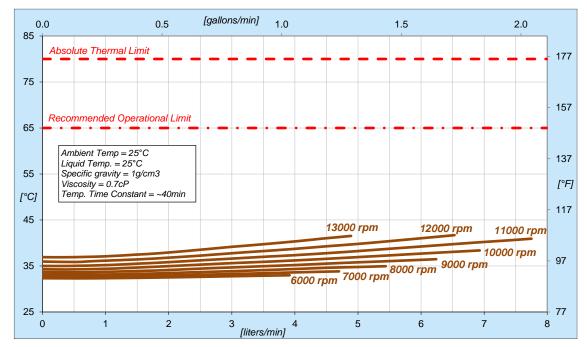
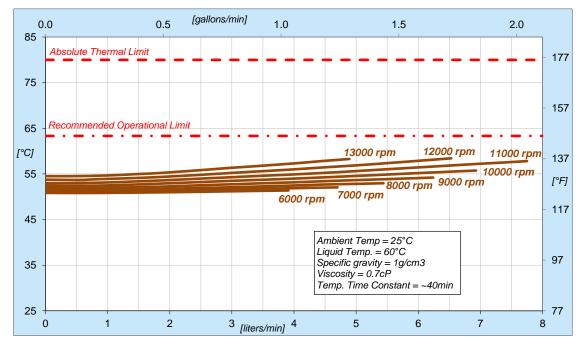




Figure 17: Temperature curves for driver @ 25°C liquid temperature Note 1: Typical data measured with DCP-30.1 pump head. Temperature is inside of the integrated motor and controller, contact temperature of surface is below this temperature.



#### Figure 18: Temperature curves for the driver @ 60°C liquid temperature

Note 1: Typical data measured with DCP-30.1 pump head. Temperature is inside of the integrated motor and controller, contact temperature is below this temperature.



The above curves are measurements of the motor temperature at certain liquid and ambient temperatures. Equation (Eq. 1) shows how to calculate the motor temperature for other liquid and ambient temperatures based on these curves.

$$T_{M}(T_{L}, T_{A}) \approx T_{M} \underbrace{(T_{L} = 25^{\circ}C, T_{A} = 25^{\circ}C)}_{see \ Figure \ 17} + (T_{L} - 25^{\circ}C) \cdot \underbrace{tg_{LM}}_{\substack{\varepsilon \ 0.59}} + (T_{A} - 25^{\circ}C) + (T_{A} - 25^{\circ}C) \cdot \underbrace{tg_{LM}}_{\substack{\varepsilon \ 0.59}} + \underbrace{tg_{LM}}_{\substack{\varepsilon \ 0.59}} + (T_{A} - 25^{\circ}C) \cdot \underbrace{tg_{LM}}_{\substack{\varepsilon \ 0.59}} + \underbrace{tg_{LM}}_{\substack{$$

All above presented thermal data are typical values, which are partly based on measurements and partly on interpolations with a simplified thermal model and are therefore only guideline values and are suitable for a first layout of the basic thermal concept. It is recommended to check the thermal values with the motor placed on the final location and under worst case performance conditions of the application.

In order to account for thermal variations (like ambient temperature, closed chemical cabinets or corners without ventilations) and to not significantly reduce the MTBF of the motor it is recommended to keep about 15°C safety distance to the absolute thermal limit of the driver (80°C) when designing the thermal concept of the flow control system.

It is recommended to avoid thermal stagnation in the room or cabinet where the driver is placed. Any type of circulation decreases the driver temperature significantly.



## 3.4 Hydraulic Circuit Design

Following general design rules help to operate the flow control system optimally considering efficiency, optimum priming behavior and low shear forces:

- 1. The general rule for minimum shear forces and optimum priming behavior is to minimize the pressure drop in the inlet circuit and avoid negative pressure at the inlet of the pump head.
- 2. Minimize tubing length at the inlet of the pump head and maximize the ID (not smaller than the pump head inlet ID of 1/4" = 6.5 mm is recommended). This reduces the pressure drop and the tendency of cavitation.
- **3.** Avoid any restrictions, valves, elbows, bended tubing and sharp edges at the inlet circuit of the pump head, which potentially cause cavitation resulting in higher shear forces and bubble collection in the pump head with the danger of priming loss.
- 4. Place the flow control system at the lowest point of the hydraulic circuit. Optimum is as much as possible below a tank or reservoir. This optimizes priming behavior and keeps the inlet pressure positive for low shear forces.
- 5. Keep the liquid level in the reservoir tank or bag as high as possible, which increases the inlet pressure of the pump head and minimized heat up of the liquid.
- 6. When horizontal mounting of the driver the optimum outlet angle of the pump head is 45 degree (see *Figure 26*) hence allowing gas bubbles to leave the pump head and keep it primed.
- 7. To minimize heat up of the liquid the overall pressure drop in the hydraulic circuit shall be reduced as much as possible.
- **8.** It shall be avoided to pump longer times against a closed valve, which can cause heat-up of the liquid and higher shear forces.
- **9.** At higher liquid temperature rules mentioned above become more important due to higher cavitation tendency of the liquid.

Contact the *Levitronix<sup>®</sup> Technical Service* department (see *Section 8*) for more detailed considerations and support on the design of the hydraulic circuit.



## **4** Installation

## 4.1 Electrical Installation of Stand-Alone Model

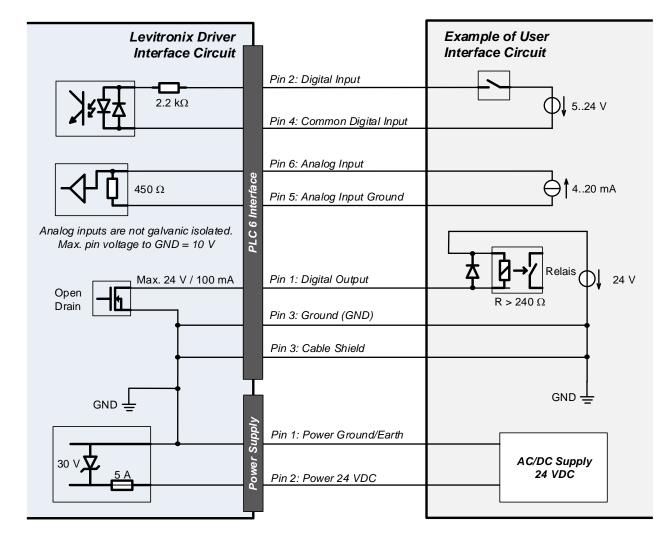
## 4.1.1 Overview of Connections and Designations



### Figure 19: Electrical connections to Stand-Alone driver IPD-30.5

| Pin # | Pin<br>Name | Wire<br>Color <sup>1</sup> | Description   | Standard<br>Designation <sup>2</sup> | Specifications<br>Typical Levels  | Note                              |
|-------|-------------|----------------------------|---------------|--------------------------------------|-----------------------------------|-----------------------------------|
| 2     | P +         | red                        | + 24 VDC      | Power Supply                         | Voltage: 24 VDC ±10%              | "P -" shall be connected to earth |
| 1     | P -         | black                      | Ground/Earth  |                                      | Power: 35 W                       | P - shall be connected to earth   |
| 3     | NC          | white                      | Not connected |                                      | Wire of compatible cables is cut. | Wire of compatible cables is cut. |

#### Table 9: Power supply connector of Stand-Alone driver model

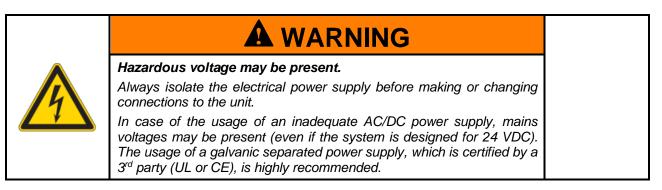

Note 1: Wire colors of compatible cables: ICP-1.1-xx. Note 2: Designations for standard firmware. For other firmware refer to relevant documentation.

| Pin # 1 | Pin<br>Name | Wire<br>Color <sup>1</sup> | Description             | Standard<br>Designation <sup>2</sup>         | Typical Levels                                                                                                | Note                                                                                                                       |
|---------|-------------|----------------------------|-------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 6       | Ain1        | pink-blue                  | Analog Input            | Reference<br>Value<br>(Set Flow or<br>Speed) | 420 mA = 0100% of full scale flow<br>420 mA = 016000 rpm<br>Speed limit = 13000 rpm<br>Cutt-off speed = 0 rpm | For <i>Flow Control</i> mode.<br>For <i>Speed Control</i> mode.<br>450 Ohm shunt input, no galvanic isolation.             |
| 5       | Ain_GND     | red                        | Analog Input<br>Ground  |                                              |                                                                                                               | Reference for Ain1.                                                                                                        |
| 1       | Dout1       | white                      | Digital Output          | Status Pump                                  | Closed circuit $\Rightarrow$ active, system on Open circuit $\Rightarrow$ not active, system off              | Open drain, max. 24V, 100mA<br>This signal indicates the state of the system.                                              |
| 3       | GND         | brown<br>black<br>Shield   | Ground                  |                                              |                                                                                                               | Reference for Dout1.                                                                                                       |
| 2       | Din1        | yellow                     | Digital Input           | PLC Enable                                   | Edge triggered:<br>$0 \lor -5-24 \lor \Rightarrow \text{Enable}$<br>$5-24 \lor \Rightarrow \text{Disable}$    | For enabling of the system with external signal. Galvanic separation with optocoupler and 2.2 k $\Omega$ input resistance. |
| 4       | Din_COM     | grey                       | Common<br>Digital Input |                                              |                                                                                                               | Reference for Din1.                                                                                                        |

#### Table 10: PLC 6 connector of Stand-Alone driver model

Note 1: Screw type connector pin-out and wires of compatible cables ICS-1.3-xx. Note 2: Designations for standard firmware. For other firmware refer to relevant documentation.






## 4.1.2 Overview Electrical Schematics of Driver Interface

Figure 20: Electrical schematics of interfacing for Stand-Alone driver model



## 4.1.3 Installation Instructions for Power Supply



- 1. A certified and tested desktop power supply with a specific connector is available as an accessory (see *Table 4*), which allows simple direct connection to the driver.
- 2. For other power supplies an open wire power cable for connection to the driver is specified in *Table 4* (cable type *ICP-1.1*). Depending on the required hydraulic operational point (see *Figure 8*), the flow control system requires 24 VDC with a maximum power of 35 W. At a lower performance power supplies with smaller power or bigger supplies to power several flow control systems simultaneously may be used. Consult *Figure 16* to get the power consumption depending on the flow. If power supplies are used other than the one defined by *Levitronix®*, it is highly recommended to test these under dynamic conditions (acceleration and braking of the pump rotor speed).
- 3. Make sure that the polarity is correct, and that AC/DC power supply is off.

## 4.1.4 Installation of Flow Sensor

See Section 4.4.

## 4.1.5 Installation PLC Interface Signals

To operate the flow control system with a *PLC* the analog input can be used to set the flow or speed. The digital output can be used to monitor the pump status and operating parameters (see *Table 10*).

## CAUTION

The analog input is not galvanically isolated from the controller electronics. To avoid ground loops and malfunctions, use floating analog signals.

- 1. Power off the system.
- **2.** A signal cable with driver connector is available to simplify PLC wire connections (see *Table 4* cable type *ICS-1.3*). Connect the designated PLC wires according to *Table 10*.
- 3. Follow *Figure 20* as reference for hardware configuration of the PLC inputs and outputs.
- 4. Protect the un-used wires against short-circuit to each other



## 4.2 Electrical Installation of *EasyConnect* Model

4.2.1 Overview of Connections and Designations



Figure 21: Electrical connections to EasyConnect flow control driver IFD-30.4

| Pin # | Pin<br>Name | Wire<br>Color <sup>1</sup> | Description   | Standard<br>Designation <sup>2</sup> | Specifications<br>Typical Levels  | Note                              |
|-------|-------------|----------------------------|---------------|--------------------------------------|-----------------------------------|-----------------------------------|
| 2     | P +         | red                        | + 24 VDC      | Deuter Supply                        | Voltage: 24 VDC ±10%              | "P -" shall be connected to earth |
| 1     | P -         | black                      | Ground/Earth  | Power Supply                         | Power: 35 W                       | P - shall be connected to earth   |
| 3     | NC          | white                      | Not connected |                                      | Wire of compatible cables is cut. | Wire of compatible cables is cut. |

#### Table 11: Power supply connector of EasyConnect driver

Note 1: Wire colors of compatible cables: ICP-1.1-xx. Note 2: Designations for standard firmware. For other firmware refer to relevant documentation.

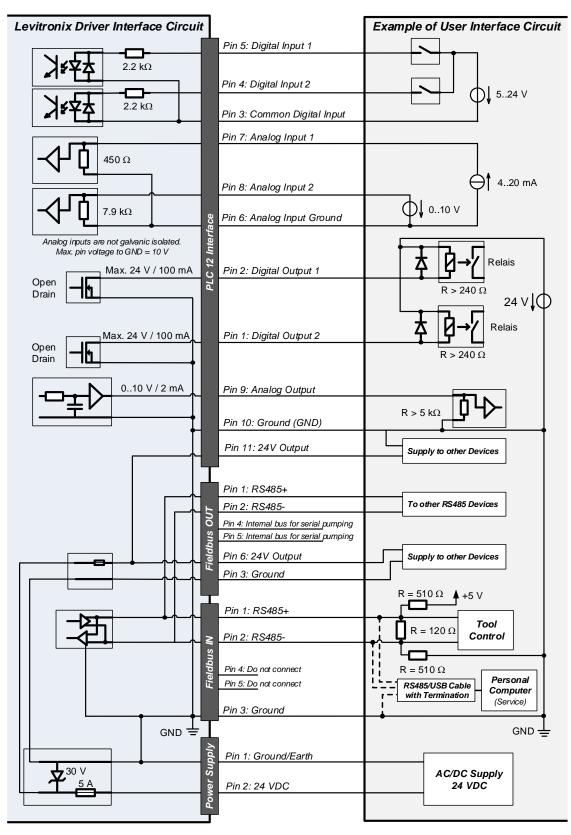
| Pin # 1 | Pin<br>Name   | Wire<br>Color 1 | Description   | Standard<br>Designation | Typical Levels       | Note                                                                                                 |  |
|---------|---------------|-----------------|---------------|-------------------------|----------------------|------------------------------------------------------------------------------------------------------|--|
| 3       | 3 GND black G |                 | Ground        |                         |                      |                                                                                                      |  |
|         |               | shield          |               |                         |                      |                                                                                                      |  |
| 6       | NC            | pink-blue       | Not connected |                         |                      | -                                                                                                    |  |
| 1       | RS485+        | white           | RS485+        | Fieldbus                | Modbus RTU protocol. | For remote control with other devices.                                                               |  |
| 2       | RS485-        | yellow          | RS485-        | Fieldbus                | Modbus RTO protocol. | Usage of <i>Levitronix Service Software</i> with a RS485 to USB adaptor cable (see <i>Table 4</i> ). |  |
| 4       | Internal      | grey            | Internal      | Do not                  |                      | Internal bus needed to connect pumps for serial pumping.                                             |  |
| 5       | Internal      | red             | Internal      | connect.                |                      |                                                                                                      |  |

#### Table 12: Fieldbus IN connector of EasyConnect driver

Note 1: Screw type connector pin out and wires of compatible cables: ICS-1.1-xx and ICS-1.2-xx.

| Pin#1 | Pin<br>Name | Wire<br>Color 1          | Description  | Standard<br>Designation | Typical Levels                                                               | Note                                                                                                                                                                                                                                    |  |
|-------|-------------|--------------------------|--------------|-------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3     | GND         | brown<br>black<br>shield | Ground       | Supply<br>Output        | 24VDC ±10%, 200 mA max.<br>(Max. current is together with Pout of <i>PLC</i> | For supply of external devices (displays etc.).<br>Internally protected.                                                                                                                                                                |  |
| 6     | Pout        | pink-blue                | Output 24VDC | Oulpui                  | connector in Table 14)                                                       |                                                                                                                                                                                                                                         |  |
| 1     | RS485+      | white                    | RS485+       |                         | ieldbus Modbus RTU protocol.                                                 | For remote control with other devices.<br>Usage of <i>Levitronix Service Software</i> with a<br>RS485 to USB adaptor cable (see <i>Table 4</i> ).<br>Feed through for system arrays.<br>Internal bus needed to connect pumps for serial |  |
| 2     | RS485-      | yellow                   | RS485-       | Fieldbus                |                                                                              |                                                                                                                                                                                                                                         |  |
| 4     | Internal    | grey                     | Internal     | Do not                  |                                                                              |                                                                                                                                                                                                                                         |  |
| 5     | Internal    | red                      | Internal     | connect.                |                                                                              | pumping.                                                                                                                                                                                                                                |  |

#### Table 13: Fieldbus OUT connector of EasyConnect driver


Note 1: Screw type connector pin out and wires of compatible cables: ICS-1.1-xx and ICS-1.2-xx.

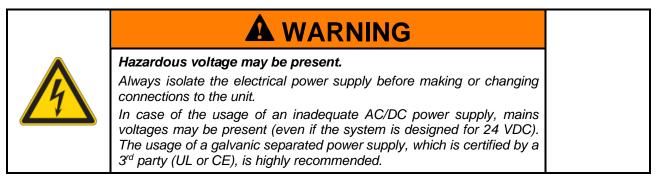
| Pin#1 | Pin<br>Name | Wire<br>Color <sup>1</sup> | Description                       | Standard<br>Designation <sup>2</sup>      | Typical Levels                                                                                                                                                                                                                     | Note                                                                                                                                                                                                                                                                |
|-------|-------------|----------------------------|-----------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7     | Ain1        | violet                     | Analog Input<br>(Current Input)   | Reference Value<br>(Set Flow or<br>Speed) | 420 mA = 0100% of full scale flow<br>420 mA = 016000 rpm<br>Speed limit = 13000 rpm<br>Cutt-off speed = 0 rpm                                                                                                                      | For Flow Control mode.<br>For Speed Control Mode.<br>450 Ohm shunt input, no galvanic isolation.<br>The designation of the analog inputs can be<br>changed with <i>Levitronix</i> <sup>®</sup> Service Software.                                                    |
| 8     | Ain2        | grey-<br>pink              | Analog Input<br>(Voltage Input)   | Configurable as<br>setpoint input         | 010 V                                                                                                                                                                                                                              | Analog voltage input: 0 – 10V<br>(7.9 kOhm, no galvanic isolation).<br>Note: Max. input voltage of 11 V shall not be<br>exceeded.<br>The designation of the analog inputs can be<br>changed with Levitronix <sup>®</sup> Service Software.                          |
| 6     | Ain_GND     | blue                       | Analog Input<br>Ground            |                                           |                                                                                                                                                                                                                                    | Reference for analog inputs Ain1 and Ain2.                                                                                                                                                                                                                          |
| 9     | Aout1       | blue-<br>red               | Analog Output<br>(Voltage Output) | Actual Flow<br>Value                      | 010 V = 0100% of full scale                                                                                                                                                                                                        | Direct connection, no protection. Galvanic<br>isolation on user side is required. GND is<br>reference.<br>The configuration of the analog output can be<br>changed with <i>Levitronix</i> <sup>®</sup> Service Software 2.0                                         |
| 10    | GND         | white-green<br>shield      | Ground                            |                                           |                                                                                                                                                                                                                                    | Reference for Aout1, Dout1, Dout2 and Pout.                                                                                                                                                                                                                         |
| 2     | Dout1       | brown                      | Digital Output                    | Status Pump                               | Closed circuit $\Rightarrow$ active, pump running<br>Open circuit $\Rightarrow$ not active, system off or error                                                                                                                    | Open drain, max. 24V, 100mA<br>This signal indicates the state of the system. If<br>not active, pump is either in "Off" or in "Error"<br>state.<br>The configuration of the digital outputs can be<br>changed with <i>Levitronix</i> <sup>®</sup> Service Software. |
| 1     | Dout2       | white                      | Digital Output                    | Status<br>Flow Sensor                     | Closed circuit $\Rightarrow$ active, measurement o.k.<br>Open circuit $\Rightarrow$ not active, measure. error<br>Slow blinking (2 Hz) $\Rightarrow$ Zero Adjust error<br>Fast blinking (10 Hz) $\Rightarrow$ Zero Ad. in progress | Open drain, max. 24V, 100mA<br>The configuration of the digital outputs can be<br>changed with <i>Levitronix® Service Software</i> .                                                                                                                                |
| 5     | Din1        | pink                       | Digital Input 1                   | Enable Flow<br>Control Mode<br>(Reset)    | 5-24 V $\Rightarrow$ Flow control active<br>0 V $\Rightarrow$ Flow control not active                                                                                                                                              | Galvanic separation with optocoupler and 2.2 k $\Omega$ input resistance.<br>The " <i>Enable</i> " signal switches the system on and off. Resets pump from error state with 300-700ms pulse.                                                                        |
| 4     | Din2        | grey                       | Digital Input 2                   | Zero Adjust                               | Edge triggered: 0 V 5-24 V                                                                                                                                                                                                         | Galvanic separation with optocoupler and 2.2 k $\Omega$ input resistance.<br>Triggers a Zero Adjust of the flow sensor.                                                                                                                                             |
| 3     | Din_COM     | yellow                     | Common<br>Digital Input           |                                           |                                                                                                                                                                                                                                    | Reference for Din1 and Din2.                                                                                                                                                                                                                                        |
| 11    | Pout        | red                        | Output<br>24 VDC                  | Supply<br>Output                          | 24VDC ±10%, 200 mA<br>(Max. current is together with Pout of<br><i>Fieldbus OUT</i> connector in <i>Table 13</i> )                                                                                                                 | For supply of external devices (displays etc.).<br>Internally protected.<br>Reference is GND.                                                                                                                                                                       |
| 12    | NC          | black                      | Not connected                     |                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |

 Table 14: PLC 12 connector of EasyConnect driver

 Note 1: Screw type connector pin out and wires of compatible cables: ICS-2.1-xx
 Note 2: Designations are for standard firmware.






## 4.2.2 Overview Electrical Schematics of Driver Interface

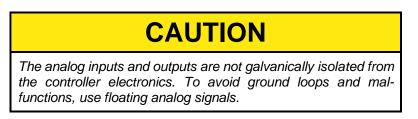
#### Figure 22: Electrical schematics of EasyConnect driver interfacing

Note 1: RS485/USB converter cable with termination resistors to be ordered according to Table 4. Note 2: Do not use multiple master devices on the RS485 at the same time.



## 4.2.3 Installation Instructions for Power Supply




- 1. Certified and tested power supplies (desktop and DIN rail version) are available as an accessory (see *Table 4*).
- 2. For other power supplies an open wire power cable for connection to the driver is specified in *Table 4* (cable type *ICP-1.1*). Depending on the required hydraulic operational point (see *Figure 8*), the flow control system requires 24 VDC with a maximum power of 35 W. At a lower performance power supplies with smaller power or bigger supplies to supply several flow control systems simultaneously may be used. Consult *Figure 16* to get the power consumption depending on the flow. If other power supplies are used than the one recommended by *Levitronix®*, it is highly recommended to test these under dynamic conditions (acceleration and braking of the pump rotor speed).
- 3. Make sure that the polarity is correct and that AC/DC power supply is off.

### 4.2.4 Installation of Flow Sensor

See Section 4.4.

## 4.2.5 Installation PLC Interface Signals

To operate the flow control system with a PLC the analog input can be used to set either the speed or the process value (flow or pressure). The digital and analog outputs can be used to monitor the pump status and operating parameters (see *Table 14*).



- **1.** Power off the system.
- **2.** A signal cable with driver connector is available to simplify PLC wire connections (see *Table 4* cable type *ICS-2.1*). Connect the designated PLC wires according to *Table 14*.
- 3. Follow Figure 24 of the OEM model as reference for hardware configuration of the PLC in/outputs.
- 4. Protect the un-used wires against short-circuit to each other.

### 4.2.6 Installation Fieldbus Interfaces

For usage of the *RS485* (*Fieldbus IN*) as a control or service interface, an initialization resistor network according to *Figure 23* shall be used to have a stable communication and avoid disturbance effects. The *RS485 Modbus RTU* protocol for master communication is available at *Levitronix*<sup>®</sup> on request. The *Fieldbus OUT* interface can be used to feed through the *RS485* bus to other devices.

For *Service* and *Debugging* purposes with the *Levitronix<sup>®</sup> Service Software* and PC a USB/RS485 converter cable with integrated initialization resistors can be ordered according to *Table 4*. Do not use multiple master devices at the same time.

## 4.2.7 Installation of RS485 Fieldbus Flow Control System Arrays

LEVITRONIX

*Figure 23* shows a typical multi-system arrangement with the *RS485* fieldbus and its basic specifications for the *EasyConnect* Model.

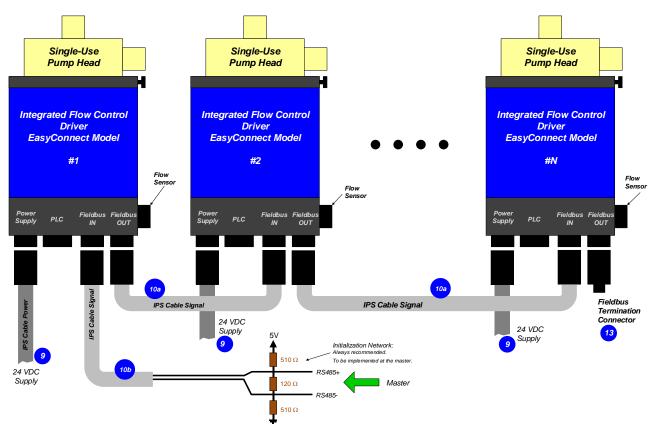



Figure 23: Multi-system arrangement with EasyConnect models with RS485 fieldbus Note 1: See Table 4 for cable specifications.

Following points and information shall be considered:

- → Various standard cables (see Table 4) are available to simplify the installation of a fieldbus array as illustrated in Figure 23.
- ➔ Testing has been done with arrangements of 8 drive systems. Higher number is possible, but it is recommended to contact Levitronix<sup>®</sup> Technical Service department (see Section 8) for details and support.
- → Address setting of the pump units can be done with the Levitronix<sup>®</sup> Service Software and a PC. A USB/RS485 converter cable with integrated initialization network can be ordered according to Table 4.
- → The fieldbus array must be terminated as illustrated in *Figure 23*. A dedicated connector with integrated termination resistor (see *Table 4*) is available.
- → The RS485 Modbus RTU protocol for master communication is available at Levitronix<sup>®</sup> on request.
- ➔ Do not use multiple master systems at the same time and do not use closed ring arrangements.

## 4.2.8 Installation of Fieldbus for Blending

Blending setup with 2 pumps can be done as shown in *Figure 6.* Same instructions can be followed as mentioned in *Section 4.2.7*.

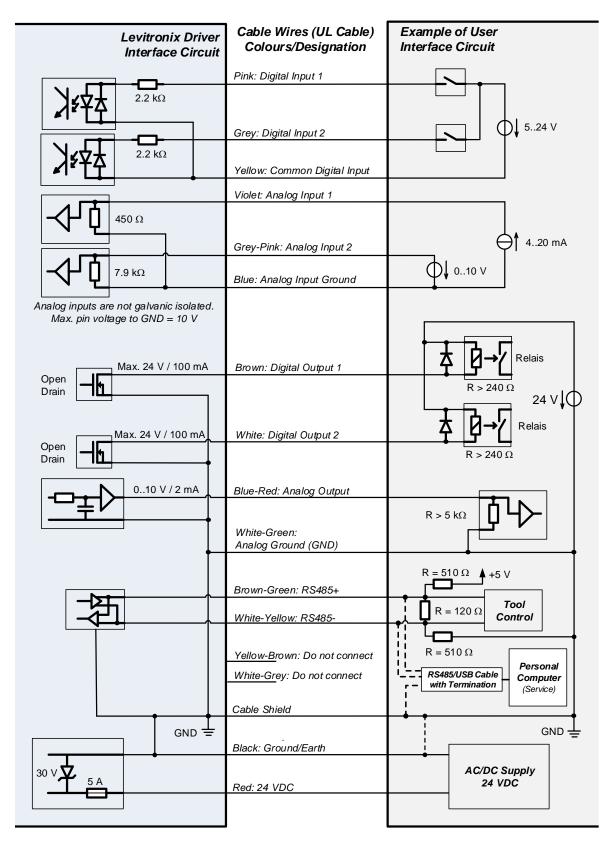


## 4.3 Electrical Installation of OEM Model

## 4.3.1 Overview Wire Designation of Driver Cable

| Wire<br>Name | Wire<br>Color    | Description                       | Standard<br>Designation                   | Typical Levels                                                                                                                                                                     | Note                                                                                                                                                                                                                                                          |  |
|--------------|------------------|-----------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| P+           | red              | + 24 VDC                          |                                           | Voltage: 24 VDC ±10%<br>Power: 35 W                                                                                                                                                |                                                                                                                                                                                                                                                               |  |
| P-           | black            | Power Input<br>Ground / Earth     | Supply                                    |                                                                                                                                                                                    | P- to be connected to earth.                                                                                                                                                                                                                                  |  |
| Ain1         | violet           | Analog Input 1<br>(Current Input) | Reference Value<br>(Set Flow or<br>Speed) | 420 mA = 0100% of full scale flow<br>420 mA = 016000 rpm<br>Speed limit = 13000 rpm<br>Cutt-off speed = 0 rpm                                                                      | For Flow Control mode (default mode).<br>For Speed Control Mode.<br>450 Ohm shunt input, no galvanic isolation.<br>The designation of the analog inputs can be changed<br>with Levitronix <sup>®</sup> Service Software.                                      |  |
| Ain2         | grey-<br>pink    | Analog Input 2<br>(Voltage Input) | Configurable as setpoint input            | 010 V                                                                                                                                                                              | Analog voltage input: 0 – 10V<br>(7.9 kOhm, no galvanic isolation).<br>Note: Max. input voltage of 11 V shall not be<br>exceeded.<br>The designation of the analog inputs can be changed<br>with Levitronix <sup>®</sup> Service Software.                    |  |
| Ain_GND      | blue             | Analog Input<br>Ground            |                                           |                                                                                                                                                                                    | Reference for analog inputs Ain1 and Ain2.                                                                                                                                                                                                                    |  |
| Din1         | pink             | Digital Input 1                   | Enable Flow<br>Control Mode<br>(Reset)    | 5-24 V $\Rightarrow$ Flow control active0 V $\Rightarrow$ Flow control not active                                                                                                  | Galvanic separation with optocoupler and 2.2 k $\Omega$ input resistance.<br>The " <i>Enable</i> " signal switches the system on and off.<br>Resets pump from error state with 300-700ms pulse.                                                               |  |
| Din2         | grey             | Digital Input 2                   | Zero Adjust                               | Edge triggered: 0 V 5-24 V                                                                                                                                                         | Galvanic separation with optocoupler and 2.2 k $\Omega$ input resistance.<br>Triggers a Zero Adjust of the flow sensor.                                                                                                                                       |  |
| Din_COM      | yellow           | Common<br>Digital Input           |                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                               |  |
| Aout1        | blue-<br>red     | Analog Output<br>(Voltage Output) | Actual Flow<br>Value                      | 010 V = 0100% of full scale                                                                                                                                                        | Direct connection, no protection. Galvanic isolation on<br>user side is required. GND is reference.<br>The configuration of the analog output can be changed<br>with <i>Levitronix</i> <sup>®</sup> Service Software.                                         |  |
| Dout1        | brown            | Digital Output 1                  | Status Pump                               | Closed circuit $\Rightarrow$ active, pump running<br>Open circuit $\Rightarrow$ not active, system off or error                                                                    | Open drain, max. 24V, 100mA<br>This signal indicates the state of the system. If not<br>active, pump is either in "Off" or in "Error" state.<br>The configuration of the digital outputs can be<br>changed with <i>Levitronix</i> ® <i>Service Software</i> . |  |
| Dout2        | white            | Digital Output 2                  | Status<br>Flow Sensor                     | Closed circuit ⇒ active, measurement o.k.<br>Open circuit ⇒ not active, measure. error<br>Slow blinking (2 Hz) ⇒ Zero Adjust error<br>Fast blinking (10 Hz) ⇒ Zero Ad. in progress | Open drain, max. 24V, 100mA<br>The configuration of the digital outputs can be changed<br>with Levitronix <sup>®</sup> Service Software.                                                                                                                      |  |
| GND          | white-<br>green  | Analog Ground                     |                                           |                                                                                                                                                                                    | Reference for Aout1, Dout1 and Dout2                                                                                                                                                                                                                          |  |
| RS485+       | brown-<br>green  | RS485 +                           | <i>E: / //</i>                            |                                                                                                                                                                                    | T                                                                                                                                                                                                                                                             |  |
| RS485-       | white-<br>yellow | RS485 -                           | - Fieldbus                                | Modbus RTU protocol                                                                                                                                                                | Termination resistors recommended                                                                                                                                                                                                                             |  |
| Shield       | shield<br>wire   | Shielding                         | Shielding                                 |                                                                                                                                                                                    | To be connected to earth<br>(see wire P-, black)                                                                                                                                                                                                              |  |

 Table 15: Signals of the driver cable with designation for standard firmware


 Note 1: For other configurations of PLC Inputs and Outputs refer to relevant firmware documentation

 Note 2: Configurations can be done with Levitronix<sup>®</sup> Service Software

 Note 3: Power wires (P+, P-) have cross section 1.5 mm² and all others 0.14 mm²



## 4.3.2 Overview Electrical Schematics of OEM Driver Interface




#### Figure 24: Electrical schematics of interfacing for OEM driver model

Note 1: RS485/USB converter cable with termination resistors to be ordered according to Table 4. Note 2: Do not use multiple master devices on the RS485 at the same time.



## 4.3.3 Installation Instructions for Power Supply



- Depending on the required hydraulic operational point (see *Figure 8*), the flow control system requires 24 VDC with a maximum power of 35 W. At a lower performance power supplies with smaller power or bigger supplies to power several flow control systems simultaneously may be used. Consult *Figure 16* to get the power consumption depending on the flow. If other power supplies are used, than the one recommended by *Levitronix®*, it is highly recommended to test these under dynamic conditions (acceleration and braking of the pump rotor speed).
- 2. Make sure that the polarity is correct, and that AC/DC power supply is off.

### 4.3.4 Installation of Flow Sensor

See Section 4.4.

### 4.3.5 Installation PLC Interface Signals

To operate the flow control system with a *PLC* the analog input can be used to set either the speed or the process value (flow or pressure). The digital and analog outputs can be used to monitor the pump status and operating parameters (see *Table 15*).

## CAUTION

The analog inputs and outputs are not galvanically isolated from the controller electronics. To avoid ground loops and malfunctions, use floating analog signals.

- 1. Power off the system
- **2.** Connect the designated wires of the driver cable according to *Table 15.* Assignments and functions of the I/Os can be changed with the controller firmware version (refer to according firmware documentation).
- 3. Follow Figure 24 as reference for hardware configuration of the PLC in/outputs.
- 4. Protect the un-used wires against short-circuit to each other

### 4.3.6 Installation of RS485 Interface

For usage of the *RS485* as a control or service interface, an initialization resistor network according to *Figure 24* or *Figure 25* shall be used in order to have a stable communication and avoid disturbance effects. The *RS485* protocol for master communication is available at *Levitronix*<sup>®</sup> on request.

For *Service* and *Debugging* purposes with the *Levitronix<sup>®</sup>* Service Software and PC a USB/RS485 converter cable with integrated initialization resistors can be ordered according to *Table 4*. Do not use multiple master devices at the same time.

PL-4078-00, Rev01, DCO# 23-191

## 4.3.7 Installation of RS485 Fieldbus for Flow Control Arrays

Figure 25 shows a flow control arrangement with the RS485 fieldbus and its basic specifications.

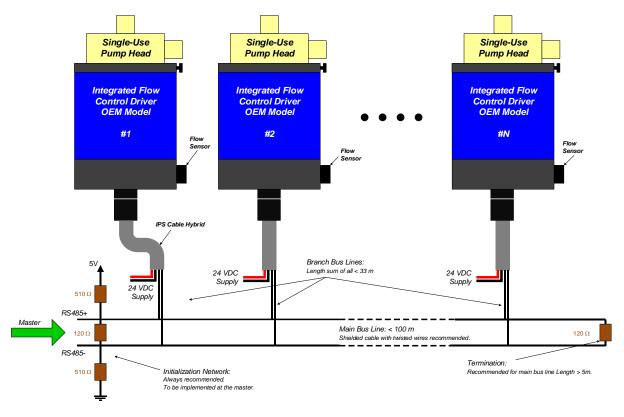



Figure 25: Flow control array arrangement with RS485 fieldbus

Following points and information shall be considered:

- Testing has been done with arrangements of 8 systems. Higher number is possible but it is recommended to contact Levitronix<sup>®</sup> Technical Service department (see Section 8) for details and support.
- → Address setting of the pump units can be done with the Levitronix<sup>®</sup> Service Software and a PC. A USB/RS485 converter cable with integrated initialization network can be ordered according to Table 4.
- → The *RS485* protocol for master communication is available at *Levitronix*<sup>®</sup> on request.
- ➔ Do not use multiple master systems at the same time.
- ➔ Do not use closed ring arrangements.

## 4.4 Electrical Installation of *Flow Sensor*

- 1. Every sensor comes delivered with a calibration sheet. Check if the S/N on the calibration sheet corresponds to the S/N on the type label of the sensor.
- 2. Please store the delivered calibration sheet or its data on a defined storage place in order to be able to refer to it in case of problems.
- 3. Attach one of the sensor extension cables (Table 4, Position 10a) coming from the driver to the sensor connector.
- 4. When applying power, the flow control drivers needs about 10 seconds for a start-up procedure to be ready. In order to get stable temperature and signals for flow converter and sensor 30 minutes shall be waited after power-on.
- 5. After start-up a Zero adjustment is recommended as described in Section 4.8.



## 4.5 Mechanical Installation – General Instructions



## A WARNING

The driver is not rated to be placed next to flammable gases. Do not use the driver next to flammable gases without adequate safety precautions to fulfill the relevant regulatory requirements.

## 4.6 Mechanical Installation of Stand-Alone and EasyConnect Model

The *Stand-Alone* and *EasyConnect* model are delivered with the mounting base plate *MBP-i30.1*, which can be used to fix the driver with four screws on the mounting slots of the base plate (see *Figure 11* for the Stand-Alone and *Figure 12* for the *EasyConnect* model). Mounting of the driver can be done in either the horizontal or vertical position.

When mounting the pump head fittings into a circuit, it must be taken care that no mechanical stress is acting on the fittings, which can result in distorting creeping effects.

The outlet orientation of the pump head can be changed in steps of 45° by assembling the pump head socket accordingly (see *Figure 26*).

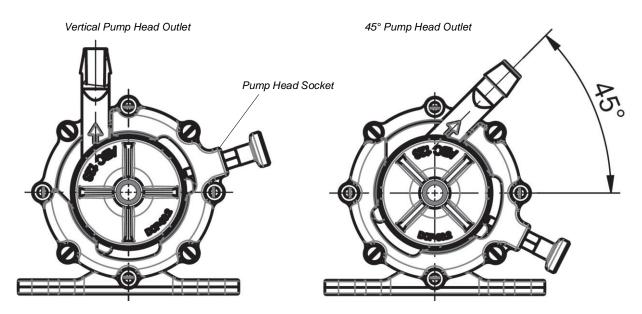



Figure 26: Vertical and 45° orientation of pump head with rotation of pump head socket

## 4.7 Mechanical Installation of OEM Model

If the mounting base plate *MBP-i30.1* is used, the driver can be fixed with four screws on the mounting slots of the base plate. Mounting of the driver can be done in either the horizontal or vertical position.

For other mounting configurations the 2 screws on the side of the driver can be used (see Figure 13).

When mounting the pump head fittings into a circuit it must be taken care that no mechanical stress is acting on the fittings, which can result in distorting creeping effects.

The outlet orientation of the pump head can be changed in steps of 45° by assembling the pump head socket accordingly (see *Figure 26*).



## 4.8 Mechanical Installation of Flow Sensor

ś

- 1. For mounting and exchanging the sensors and assure proper operation it is recommended to use the LMK mounting kits, which can be ordered according to Table 4. Contact Levitronix® for detailed drawing specifications.
- 2. Alternatively, the sensor body can be mounted with the fixation holes as shown in Figure 14. Assure that the fixation of the flow sensor and that the weight of the inlet and outlet circuit on the fittings are not causing excessive forces resulting in bending the flow measurement path, which might influence the flow measurement.
- 3. Assure that at the mounting location the allowed ambient temperature and humidity ranges are not exceeded:
  - Temperature range:
  - 0 40 °C (32 104 °F) 30 85% R.H. (no condensation) Humidity range:
- 4. The flow circuit should be filled completely with fluid. The converter DSP (Digital Signal Processor) contains special algorithms, which increase the robustness of the measurement against bubbles. However, assure that excessive bubbles are avoided in the circuit.
- 5. Ideal mounting position for the flow sensor is 45° (see Figure 27) with upward flow direction to avoid the stagnation of bubbles and particles in the measuring tube.

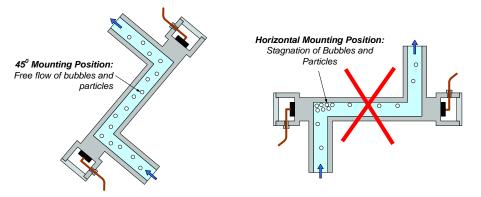



Figure 27: Mounting position of sensor

- An arrow mark on the flow sensor indicates the flow direction. Make sure that the arrow corresponds to the direction of 6. the flow in the hydraulic circuit.
- 7. Avoid excessive vibrations such as in the proximity of displacement pumps. Insufficient contact of the transducer (within the sensor) onto the pipe wall caused by vibration may result in inaccurate measurement.
- 8. The flowmeter measures flow velocity. In order to obtain fully developed flow pattern for accurate velocity measurement, straight run of 10x sensor ID upstream and of 5x ID downstream is recommended (see Figure 14 for ID specifications of the sensor models). If non-uniform turbulent flow or swirl flow is expected, install longer upstream straight run and/or a flow-rectifier.
- 9. To install on pipe that has open end, the sensor should be mounted in lower position of the pipe line.
- 10. The sensor should be mounted where pressure in the pipe is above the atmospheric pressure.
- 11. Devices like valves are recommended to be installed downstream of the sensor in order to prevent formation of bubbles in the liquid. An upstream valve may form bubbles reducing the intensity of the ultrasound signal and interfering with measurement.
- 12. A bypass pipe run (including bypass valve and shutoff valve) is recommended for easy zero adjustment and maintenance.
- 13. Please confirm that the maximum pressure is below the flow sensor specification of < 5 bar (at 20°C).
- 14. After setup a zero adjustment is recommended. Assure that the sensor is filled completely with the according fluid and is free of bubbles. Stable liquid properties should be assured by flushing the circuit with the final liquid until temperature and viscosity becomes stable. After this, zero flow shall be realized. Section 5.3 summarizes how zero adjustment can be implemented with the various models.
- 15. If zero adjustment is regularly necessary, automation is possible over a digital input of the PLC of the OEM (see Table 15) or EasyConnect (see Table 14) models or over the RS485 fieldbus interface.
- 16. In the following cases a re-zero is recommended:
  - 30 minutes after power-on of a cool driver and flow sensor a.
  - Change of fluid properties (temperature, viscosity, density) b.
  - Change of chemistry C.
  - Change of the hydraulic circuit d.



## 5 Operation

In this section the very basic operation of *OEM*, *EasyConnect* and *Stand-Alone* models is explained. For more extended operation modes and configurations consult the relevant *Firmware* and *Service Software* specifications.

## 5.1 Operation of Stand-Alone Model

## 5.1.1 Manual Operation

With the *Stand-Alone* model the system can be operated manually with the user panel according to *Figure 28*. The flow can be set manually with the *Down* and *Up* buttons before or after enabling it with the *On/Off* button. The *Setpoint Flow* (= Ref. Flow) is than stored in the system *EEPROM* and will stay the same, even if the system is powered off. When disabling the system by shortly pressing the *On/Off* button the *Actual Flow* is first reduced to zero before an impeller touch down is made by disabling the radial levitation. After an *Error* the system can be restarted by the *On/Off* button or by removing and reattaching the power supply.

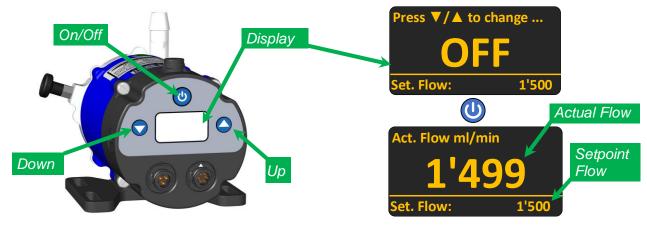



Figure 28: User panel of stand-alone model for manual operation

## 5.1.2 System Menu Functions

By pressing the **On/Off** button for more than 2 seconds the *System Menu* can be reached with the following basic functions:

| SETTINGS        |   | 1 | <ul><li>a. Switch from flow to speed control mode.</li><li>b. Switch manual to PLC remote mode.</li></ul>                                                                                                        | <ul><li>c. Enable autostart mode.</li><li>d. Configure and start a shutdown timer.</li></ul> |
|-----------------|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                 |   | 2 | a. Zero adjustment of flow meter.                                                                                                                                                                                |                                                                                              |
| ZERO ADJUSTMENT | 3 | 3 | <ul> <li>a. Monitoring of parameters like driver temp<br/>voltage (DC-link voltage), motor phase curr</li> <li>b. Reading of error, warning and message info</li> <li>c. Reading of firmware version.</li> </ul> | ents (BNG and DRV).                                                                          |

Figure 29: System Menu and its basic functions

In the *System Menu* and its sub menus, the menu tabs are browsed using the Up and Down buttons. Items are selected with the On/Off button, and values are modified using the Up and Down buttons. The Menu can be left by pressing the On/Off button for more than 2 seconds.

## 5.1.3 Operation with PLC

Remote setting of flow (or speed) with the *PLC* can be activated in the *Settings* of the *System Menu* (see *Section 5.1.2*). The flow (or speed) can be set with an analog signal (see *Table 10* for hardware details). The *Status* of the system can be monitored with a digital output signal. During *PLC* remote control all information is shown on the display.



## 5.2 Operation of EasyConnect and OEM Model

## 5.2.1 Operation with PLC

Figure 30 and Figure 31 show the state diagram of the integrated pump and the integrated flowmeter.

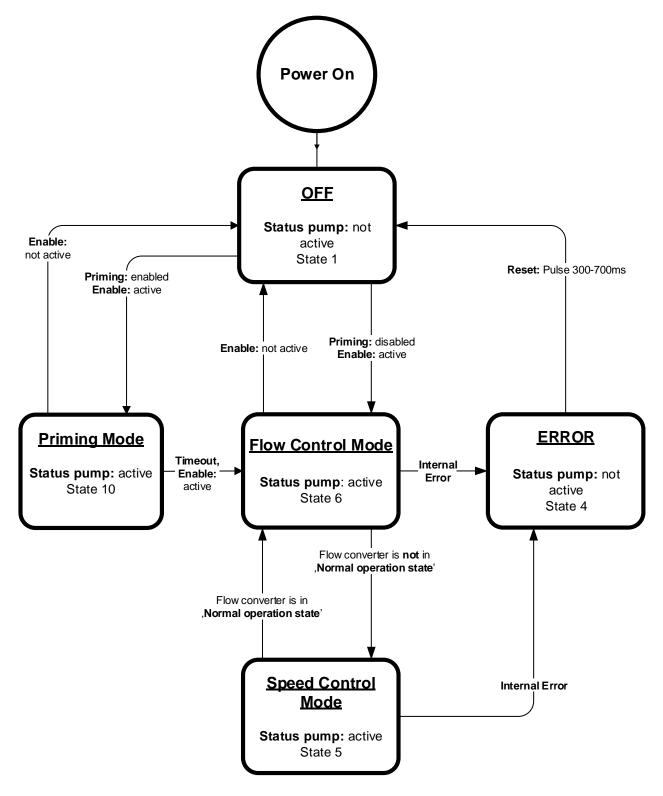



Figure 30: PLC interface state diagram of pump for standard firmware (For other configurations refer to alternate firmware documentation)



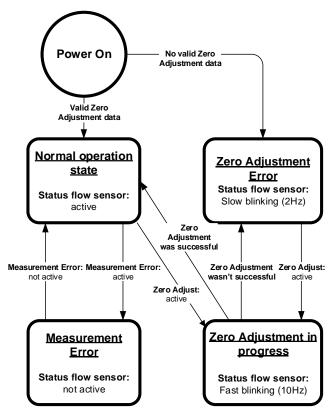



Figure 31: PLC interface state diagram of flow converter for standard firmware (For other configurations refer to alternate firmware documentation)

The status of the integrated flow controller can be determined from both, status of integrated pump and status of integrated flowmeter and is summarized in *Table 16* with the most important state combinations, state description and possible corrective actions.

| Status Pump<br>Digital Output 1 | Status Flowmeter<br>Digital Output 2 | Enable<br>Digital Input 1 | Flow Controller Status                                                                                                                                                                                                           | Possible Corrective Action                                                                                                                               |
|---------------------------------|--------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not active                      | Active                               | Not active                | Flow controller measures flow but doesn't control the flow (pump is not active).                                                                                                                                                 | Enable flow controller by Digital Input 1.                                                                                                               |
| Not active                      | Not active                           | Not active                | Measurement error: Flow sensor cannot<br>correctly measure the flow.                                                                                                                                                             | Check flow sensor cabling.<br>Remove bubbles in flow sensor.<br>Zero Adjust of flow converter if medium<br>characteristics have changed.                 |
| Active                          | Active                               | Active                    | Normal operation. Flow controller is active.                                                                                                                                                                                     |                                                                                                                                                          |
| Active                          | Not active                           | Active                    | Speed Control Mode. Flow controller runs at a<br>frozen speed, because flow sensor has<br>measurement errors.<br>The reference speed is the last determined<br>value before measurement errors appeared in<br>Flow Control Mode. | Check flow sensor cabling and connections.<br>Remove bubbles in flow sensor.<br>Zero Adjust of flow converter if medium<br>characteristics have changed. |
| Active                          | Slow blinking<br>at 2 Hz             | Active                    | Speed Control Mode. Flow controller runs at a<br>frozen speed, because flow sensor has a zero<br>adjustment error.<br>The reference speed is the last determined<br>value before the error appeared in the Flow<br>Control Mode. | Stop flow controller.<br>Make sure there is no flow through the<br>sensor.<br>Activate Zero Adjust to start a new Zero<br>Adjust.                        |
| Active                          | Fast blinking<br>at 10 Hz            | Active                    | Speed Control Mode. Flow controller runs at a frozen speed.<br>Zero Adjust is in progress and frozen speed is the speed before Zero Adjust was started.                                                                          | Wait until Zero Adjust is finished.                                                                                                                      |
| Not active                      | *                                    | Active                    | Integrated pump is in error state.                                                                                                                                                                                               | Determine type of pump error with Service<br>Software or Modbus RTU protocol.<br>Reset flow controller with 300-700ms pulse.                             |
| *                               | Slow blinking<br>at 2 Hz             | *                         | Zero adjustment error: Last zero adjustment sequence failed.                                                                                                                                                                     | Remove bubbles in flow sensor.<br>Check flow sensor cabling and connections.<br>Activate Zero Adjust to start a new zero<br>adjustment.                  |
| *                               | Fast blinking<br>at 10 Hz            | *                         | Zero adjustment is in progress.                                                                                                                                                                                                  | Wait until zero adjustment has finished.                                                                                                                 |

#### Table 16: Overview of states for standard firmware

(\* Wildcard for status.) (For other configurations refer to alternate firmware documentation).



## 5.2.2 Operation with Fieldbus (RS485)

The flow control driver can be operated with the fieldbus interface, which is an *RS485* with Modbus RTU protocol. Contact *Levitronix*<sup>®</sup> *Technical Department* (see *Section 8*) for detailed protocol specifications. The RS485 interface can be used in connection with the USB interface of a PC and the *Levitronix*<sup>®</sup> *Service Software*. Various accessory cables are available to connect to the *RS485* of the drivers as illustrated in *Figure 5* for the *EasyConnect* model and *Figure 7* for the *OEM* model.

### 5.2.3 Operation with User Panel LUI-B.1

The RS485 interface can also be used with the user panel *LUI-B.1*, which has the same menu functions as the *Stand-Alone* model (described in *Section 5.1*). The relevant configurations are illustrated in *Figure 7* for the *OEM* and in *Figure 5* for the *EasyConnect* driver models.

## 5.3 Zero Adjustment of Flow Sensor

## 5.3.1 Stand-Alone Model

Zero adjustment of the flow sensor can be done manually in the system menu functions as described in *Section 5.1.2*. It is important to prepare the flow sensor as described in *Section 4.8* and to assure that the hydraulic circuit is completely filled and zero flow is assured.

## 5.3.2 EasyConnect and OEM Model

Zero adjustment of the flow sensor can be started with the relevant digital input of the PLC (see *Table 15* for *OEM* and *Table 14* for *EasyConnect* model) or the *RS485* interface of the drivers (see *Section 5.2.2*).

With the user panel LUI-B.1 zeroing can be done manually as for the Stand-Alone model (see Section 5.1.2).

It is important to prepare the flow sensor as described in *Section 4.8* and to assure that the hydraulic circuit is completely filled and zero flow is assured.



#### 6.1 Description and Preparation

LEVITRONIX

#### 6.1.1 Description

The *DCP-30* pump heads are designed for single use applications in the Life Science industries in connection with the *PuraLev® iF30SU* flow control system components. The wetted parts are made of biocompatible materials (FDA, USP VI, Animal-Free), which can be gamma sterilized.

The *Pump Head* is mounted to the *MagLev Driver* (integrated motor and controller) via the *Pump Head Socket*. The motor is connected to a controller generating the currents for rotation and the levitation of the impeller.

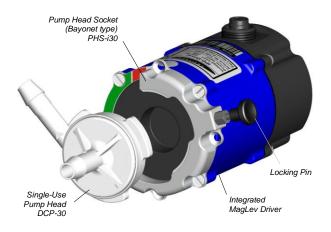



Figure 32: Single-use pump head concept

Before using the *DCP-30* pump head make yourself familiar with the following warnings, cautions and instructions.

#### 6.1.2 Inspection Prior to Use

The pump head should be inspected prior to use for any damage. Do not use the pump head if any damage is found. Contact *Levitronix*<sup>®</sup> regarding return of any suspected pump head.

#### 6.1.3 Traceability

For full traceability of the pump head the 6 digit serial number located on the top of the pump head shall be used. On the labels of the packaging and on the biocompatibility declaration this serial number is the one on the lid (see *Figure 33*).

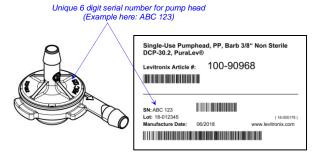



Figure 33: Serial number for traceability of pump head (left: on pump head, right: on label of package and the biocompatibility declaration)

### 6.2 General Warnings and Cautions



#### High Magnetic Field Strength of Impeller.

The pump head contains a rotor magnet with high field strength. Pacemaker may be influenced, and magnetic forces may lead to contusions. Keep distance to pacemakers and handle pump heads with care.



#### Magnetic Forces

Pay attention to the magnetic forces when handling the pump head. It must be avoided that magnetic parts are attracted resulting in contamination or da-mage (for example cracks) of the housing or impeller. Specifically pay attention to the magnetic forces, when handling two pump heads at the same time.



#### Gamma Sterilization

The pump heads DCP-30 have been tested to be robust against gamma radiation with a dose up to 40 kGy.

Handle the pump heads with care, especially after gamma radiation with doses above 25 kGy, since the radiation exposure decreases the flexibility of the pump head material.





## 6.3 Mounting of Pump Head

#### 6.3.1 Preparation

After removal of the pump head from its packaging assure that no metallic part is magnetically attaching. Specifically remove the *Fixation Disc*, which comes delivered within the packaging in order to magnetically fix the impeller against movements during transportation.

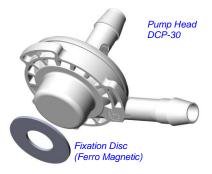



Figure 34: Pump head with Fixation Disc

Assure that the impeller speed is set to 0 rpm and that the system is disabled.

#### 6.3.2 Step 1: Insertion

Pull the *Locking Pin* radially outwards and insert the pump head at the same time.

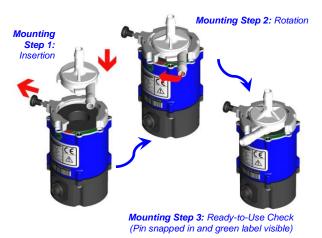



Figure 35: Intuitive 3-step pump head mounting procedure with bayonet type socket

### 6.3.3 Step 2: Rotation and Snap-In

Smoothly rotate the pump head clockwise until the *Locking Pin* snaps in.

### 6.3.4 Step 3: Ready-to-Use Check

Check that the *Locking Pin* is properly snapped in and that the green labeling on the *Pump Head Socket*, beside the outlet, is visible.

## 6.4 Removal of Pump Head

#### 6.4.1 Preparation

Set the speed to 0 rpm and disable the system. After running at higher motor or liquid temperature the pump head might stick to the motor due to thermal expansion effects. Let the system cool down before starting the removal procedure.

#### 6.4.2 Step 1: Pull Pin and Rotate

Pull the *Locking Pin* radially outwards and rotate the pump head smoothly counterclockwise as far as possible.

#### 6.4.3 Step 2: Axial Removal

Smoothly remove the pump head axially.

### 6.4.4 Step 3: Usage of Fixation Disc

It is recommended to attach the *Fixation Disc* (see *Figure 34*) to the pump head bottom in order to minimize magnetic leakage fields surrounding the impeller and hence reducing the tendency to attract other magnetic parts.

## 6.5 Assembly into Hydraulic Circuit

The following points shall be considered, when integrating the pump head into a single-use circuit.

### 6.5.1 Usage of Fixation Disc

During handling, assembling and transportation of the pump head with the hydraulic circuit, it is recommended to attach the *Fixation Disc* (see *Figure 34*) to the pump head bottom. The disc holds the impeller mechanically in place and reduces the magnetic fields, which can attract other magnetic parts during handling, sterilization and transportation.

### 6.5.2 Handling of Multiple Pump Heads

Be aware of the magnetic forces of the impellers when handling multiple pump heads at the same time. Avoid two pump heads coming together with force due to the magnetic attraction, which might cause cracks.

#### 6.5.3 Avoidance of Mechanical Stress

Avoid applying too much mechanical stress to the pump head for example, by excessively squeezing it with the other parts of the circuit to a packaging or an enclosed space of limited size, or by applying too much tension or perpendicular force to the fittings.

## 7 Troubleshooting

## 7.1 Trouble Shooting with Stand-Alone Model

For troubleshooting and failure analysis with the *Stand-Alone* model the integrated display gives advice about status and potential failure details.

The digital output (see "Status" in *Table 10*) of the PLC indicates if the system is active. However, the source of an error cannot be identified by this signal.

## 7.2 Trouble Shooting with EasyConnect and OEM Models

## 7.2.1 Troubleshooting Based on PLC Signals

The digital outputs of the integrated *PLC* provide two *Status* signal feedbacks. Possible corrective actions based on these signals are described in *Table 16*.

## 7.2.2 Troubleshooting with Service Software

The *Levitronix<sup>®</sup> Service Software* allows more detailed failure analysis through communication with the flow control system in connection with a PC and a USB interface. The USB to RS485 adaptor cable as specified in *Table 4* can be used to setup communication.

The software can be used for performing detailed troubleshooting. For usage of the Service Software refer to the Service Software User Manual, which is available in the download section on the Levitronix<sup>®</sup> web-page or contact the Levitronix<sup>®</sup> Technical Service Department (see under Section 8).

## 7.2.3 Troubleshooting with User Panel LUI-B.1

For troubleshooting and failure analysis with the user panel *LUI-B.1* the integrated display gives advice about status and potential failure details.

## 8 Technical Support

For troubleshooting, support and detailed technical information contact *Levitronix®* Technical Service Department:

| <i>Levitronix®</i><br><i>Technical Service Depar</i><br>Bändliweg 30<br>CH-8048 Zurich<br>Switzerland | tment                             |
|-------------------------------------------------------------------------------------------------------|-----------------------------------|
| Phone for US:                                                                                         | 888-569 07 18                     |
| Phone for outside US:                                                                                 | +1 888-569 07 18                  |
| E-Mail:                                                                                               | <u>TechSupport@levitronix.com</u> |



## 9 Appendix

## 9.1 Regulatory Status

## 9.1.1 CE Marking

We herewith declare that the *Flow Control System Family PuraLev® iF30SU*, in its various configurations, is in conformity with the below mentioned *European Directives* and *the UK Statutory Instruments*.

#### Machinery Directive 2014/35/EU – Machinery Regulation SI 2008 Nr. 1597:

The machinery directive/regulation essentially has been followed by a risk analysis, according mitigation actions and a user manual for safe operation. For the design and testing the following standards are used as a guideline:

| EN809    | Pumps for Fluids: basic requirements are followed.                                                      |
|----------|---------------------------------------------------------------------------------------------------------|
| EN12162  | Procedure for hydrostatic pressure testing in fluid pumps: used for max. pressure testing of pump head. |
| ISO12100 | Safety for machinery – principles for risk assessments: used for system risk analysis.                  |

#### EMC Directive 2014/30/EU – EMC Regulation SI 2016 Nr. 1091:

The following standards of the EMC directive/regulation are tested and confirmed at a certified laboratory:

| EN61000-6-2 | Generic standards, Immunity for industrial environments          |
|-------------|------------------------------------------------------------------|
| EN61000-6-4 | Generic standards, Emission standard for industrial environments |

## 9.1.2 Disposal of Equipment – WEEE Directive 2012/19/EU

Follow local legislation for disposal of equipment. In the European Union (EU) marked  $(\stackrel{\boxtimes}{\rightarrow})$  devices are governed by the European WEEE Directive 2012/19/EU. Do not dispose with normal waste.

### 9.1.3 Biocompatibility

The wet materials of the *DCP-30* pump heads and the *LFS-SU* flow sensors satisfy the following biocompatibility specifications:

#### FDA 21 CFR

All wet raw materials used in the single-use pump heads and flow sensors meet specifications according to *FDA 21 CFR* (section *177.1520* for *Olefin Polymers*). This statement is based on a declaration provided by our raw material supplier.

#### USP VI

The wet raw materials used in the single-use pump heads and flow sensors meet the specifications of *USP Class VI*. The statement is based on a declaration provided by our raw material supplier.

#### **BSE/TSE and Animal Free**

Based on declaration provided by our raw material supplier, we believe that the wet materials of the above mentioned pump heads and flow sensors have been manufactured without coming into contact with animal derived materials and that they do not contain potential spongiform or transmissible spongiform encephalopathy (BSE/TSE) risk components.



## 9.2 Symbols and Signal Words

| Symbol /<br>Signal Word | Description                                                                                                                                                                                                                                                                    | Туре                                 | Source                 |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|
| DANGER                  | Indication of an imminently hazardous situation that, if not avoided, will result in death or severe injury. Limited to the most extreme situation                                                                                                                             | Signal word                          | SEMI S1-0701           |
| WARNING                 | Indication of a potentially hazardous situation which, if not avoided, could result in death or severe injury.                                                                                                                                                                 | Signal word                          | SEMI S1-0701           |
| CAUTION                 | Indication of potentially hazardous situations which, if not<br>avoided, could result in moderate or minor injury. Also alert<br>against unsafe practice.<br>Without safety alert indication of hazardous situation which,<br>if not avoided, could result in property damage. | Signal word                          | SEMI S1-0701           |
|                         | Safety alert for "Warning" and "Caution"                                                                                                                                                                                                                                       | Safety alert                         | SEMI S1-0701           |
| Â                       | Safety alert for "Danger"                                                                                                                                                                                                                                                      | Safety alert                         | SEMI S1-0701           |
| $\triangle$             | Caution (refer to accompanying documents)<br>(is used on article labels for reference to manual)                                                                                                                                                                               | Refer to manual                      | ISO 3864               |
|                         | Toxic material, poison                                                                                                                                                                                                                                                         | Hazard identification                | IEC 61310              |
|                         | Corrosive material, corrosion                                                                                                                                                                                                                                                  | Hazard identification                | IEC 61310              |
|                         | Cut/sever hand, sharp object                                                                                                                                                                                                                                                   | Hazard identification                | ANSI Z535.3            |
|                         | Strong magnetic field                                                                                                                                                                                                                                                          | Hazard identification                | SEMI S1-0701           |
|                         | Danger: electricity, electrical hazard                                                                                                                                                                                                                                         | Hazard identification                | IEC 61310,<br>ISO 3864 |
|                         | Wear safety gloves                                                                                                                                                                                                                                                             | Hazard avoidance<br>Mandatory action | IEC 61310              |
|                         | Wear face shield                                                                                                                                                                                                                                                               | Hazard avoidance<br>Mandatory action | SEMI S1-0701           |
|                         | No pacemakers                                                                                                                                                                                                                                                                  | Hazard avoidance<br>Prohibition      | SEMI S1-0701           |