

MONITORING OF MEDIUM CONSUMPTION OVER LEVIFLOW

Application Note

PR-2400-10 Rev01

Introduction

Schematics

In most instances semiconductor Fabs have no (or limited) control of their medium consumption. Chemicals, which are in use, are very expensive in both the acquisition and disposal. With LeviFlow[™] from Levitronix[®], semiconductor Fabs are able to monitor/control their facility consumption in an easy and precise manner and can react in the event of an unusual and/or unexpected high consumption of medium. LeviFlow is a ultrasonic flowsensor based on transit time measurement.

A "Volume Counter" function that is a feature of LeviFlow enables monitoring of the overall weekly, monthly and annual consumption of each chemistry.

Main background for this application is to waste NO medium in an uncontrolled way.

This application note provides a technical overview in order to monitor the consumption flow.

Benefits

- Precise flow measurement with High Purity ultrasonic flowsensor
- Secure monitoring of medium consumption per tool
- Configurable measurement options for volume ml, ltr or m³
- Simple flowsensor installation
- Chemically inert flow path PFA wetted components, high chemical compatibility to highly aggressive chemicals (including HF) up to 100°C (higher temperatures on request)
- No moving parts no particle generation in flowsensor or maintenance.
- Very competitive pricing at high performance
- Correction factor for fluids with higher viscosity
- 6-channel converter available for highly cost effective solutions
- Simple to connect a high number of flowsensors by bus system (RS485 Modbus)
- Bubble tolerant for use with gaseous liquids

PR-2400-10 Rev01

LeviFlow[™] Sensor (available in U- and Z-shape):

Product range

LeviFlow[™] Converter:

There are two types of converter available:

- 1) Single channel converter (left side, connects to an individual flowsensor)
- 2) Multi channel converter (right side, conntects up to 6 flowsensors)

MONITORING OF MEDIUM CONSUMPTION OVER LEVIFLOW

Application Note

PR-2400-10 Rev01

Crossview through wafer Fab / Proposal

MONITORING OF MEDIUM CONSUMPTION OVER LEVIFLOW

Application Note

PR-2400-10 Rev01

Our Proposal for implementing such a monitoring/control function is to use our datalog software (LeviFlow Config Software) and collect all data in a central HDD storage (PC/Laptop), other data logging systems can be used as well. For detail please see schematic below:

PR-2400-10 Rev01

The way how this feature works:

We are using our LeviFlow[™] software feature "volume counter". Volume Counter Setup (Totalizer):

- Counter per volume (.1ml, 1ml, 10ml, etc) and Pulse Length per count
- Volume settings per Output Signal activation
- N.O. or N.C. Contact Operation for Digital Outputs

) Parameter Settings		_ 🗆 X
Basic Sensor Size 4mm(LFS-04) ▼ Full Scale (0.010 to 100.000) 4.000 L/min Unit of Flow in Display L/min ▼ Damping Time (0.0 to 25.0) 0.2 s Low Cutoff (0.0 to 25.0) 0.0 % Kinematic	Flow Alarm Settings Hysteresis (0.0 to 20.0) 0.0 ≈ Alarm High Value (0.0 to 125.0) Contact Type 105.0 ≈ N.0. ▼ Alarm Low Value (-10.0 to 125.0) Contact Type • -10.0 ≈ N.0. ▼ Volume Counter Settings Volume Counter Enable ▼ Volume Counter Base Unit 1 ▼ Multiplier Factor ×1 ▼	Flow Signal Error Behavior Flow Level on Error -25% Error Ignore Time (0 to 99) 2 s Bubble Detection Settings Bubble Detect Hold Time (0 to 99) 0 s
Viscosity (0.0 to 99.99) 1.00 cSt Analog Output Settings 4.20 mA	Volume Counter Pulse Length 50 ms 💌 Volume Counter Alarm Enable 🗖	Firmware Version 1601 Serial Number 1C09F087
Digital Injud Settings Volume Counter Reset Digital Output Settings Digital Output 1 Flow Signal Error Digital Output 2 Flow Signal Error	Volume Counter Alarm H Contact Value Contact (0 to 999999) equals 50 50 L N.O. ▼ Volume Counter Alarm HH Contact Value Type (0 to 999999) equals 0 0 L Volume Counter Reset Reset	Device No. Select No.1 Zero Adjust Data Transfer Write to Converter Converter

The settings above mean that when 1 liter (volume) has passed through the sensor, a pulse signal is created that can be additionally logged via our datalogging software. To summarize, this feature provide the chemical consumption data on a daily, weekly, monthly or yearly basis, along with flow rate (Max, Min and average).

PR-2400-10 Rev01

The "volume counter" has an additional function over a digital input where it is possible to reset the counter back to zero.

ļ le	¥IFLO₩™ Co	nfig Software ¥1.14					×
File	Calibration	n Parameter Settings	s Configuration File	Wave Monitor Help			EVITRONIX
_							
			Flow Graph			Device No.1 Flow	Device No.4 Flow
			FLOW CH1			Full Scale 4000 mL (min	Full Scale
	1400 £.					Flow Quantity	Flow Quantity
	1.00				:	-0.800 mL/min	mL/min
	1200 					mL/min	mL/min
	4000				: (Volume Counter	Volume Counter
	1000 +··· 7 I					Device No 2 Eleve	Device No 5 Flow
, ini	800 +					Full Scale	Full Scale
	, į				1	Flow Quantity	Flow Quantity
- B	600 [mL/min	mL/min
	400 +				1	Average Value	Average Value
	400 +					Volume Counter	Volume Counter
	200 ‡					Device No 3 Flow	Device No 6 Flow
	Ŧ					Full Scale	Full Scale
	ــل 0	115 17	 	120 125	140	Elow Quantity	Elow Quantity
		115 12	ZU 125 Time [s]	130 135	140	mL/min	mL/min
						Average Value	Average Value
	0.02.15.710	Communication	Mode Select	Data Logging	_	Volume Counter	Volume Counter
	0.02.10.110		LFC-6C Mode	Data Log Enable			
		Interval	Average Mode	Directory Select		Status Monitor 🔤 🗖 Flow Mor	nitor Setting
		50 m	15	Selected!!		STATUS Flow Unit	Min Flow
	START	Top Device No.		(100 to 60000)		mL/min	▼ 0 mL/min
		No.1 💌			Data / TCH		1500
	1	Device Count					Time Scale
	STOP						30 8
_							

PR	-240	0-1	0 R	ev/01
	2			

Media waste – cause and	 Needle valve adjustment for flow is not a calibrated method → actual flows can be higher from process specified or requested. 					
effect	 Defective pneumatic valves, valve closes not correctly or is damaged , jammed poppet in the valve body → low flow or total loss of flow that can lead to process drift or loss of yield when no feedback signal is available. 					
	 Process to drain applications → facility shut of valves are damaged or defect. 					
	 2 or 3-way valves in recirculation line → switching between CDS reclaim and drain line is not correct that can result in chemical loss. 					
	 Tank maximum fill sensor is not responding → facility shut off valve get no signal from fill sensor so an overflow into the chemical drain is possible. 					
	 Leak Sensor in chemical cabinet is defect → fluids can't be detected and a leake ca damage the tool 					
Technical Support	For troubleshooting, support and detailed technical information contact <i>Levitronix</i> [®] <i>Technical Service Department</i> :					
	Levitronix Technical Service Department Technoparkstr. 1 CH-8005 Zurich Switzerland Phone: +41-44-445 19 13 E-Mail: TechSupport@levitronix.com					